
Univ. Grenoble Alpes (Ensimag & UFR IM2AG)
M1 MoSIG

Academic year 2024-2025

Principles of Operating Systems — Final Exam

December 2024

Duration : 3 hours
All documents are forbidden except one (dual-side) handwritten A4 paper sheet.
All electronic devices are forbidden.
The number of points per exercise is only provided for indicative purposes.
The grade will take the quality of the presentation into account.

This exam is made of two parts. Use distinct answer sheets for each part.

Part I

Problem 1 (2 points)

1.1 Today, a traditional hardware/software computer system (for example Linux running
on a machine with Intel x86 CPUs) is typically based on the following features:

Feature A: two execution modes on the CPU: user mode and supervisor mode (and appli-
cations are forbidden to access the memory address range that belongs to the kernel);

Feature B: support for virtual memory (i.e., there is a distinct virtual address space for
each process);

Feature C: support for hardware interrupts (for example: timer interrupts, disk inter-
rupts).

(a) Consider a design in which feature B is not available. Give 3 drawbacks compared to a
traditional system? (For each drawback, explain briefly)

(b) Consider a design in which feature C is not available. Give 2 drawbacks compared to a
traditional system? (For each drawback, explain briefly)

page 1/13

1.2 In this question, we consider a machine with a single CPU. We consider a scenario
in which the CPU is time-shared between two threads TA and TB. Each thread performs
a distinct/independent computation. We compare two setups: in the first one, TA and TB

belong to the same process, while in the second one TA and TB belong to distinct processes.
There are no other differences between the two setups (in particular, the threads perform
exactly the same work in both cases).
We observe that the total execution time of TA and TB is shorter in the first setup.

Give 2 reasons that may explain this phenomenon and justify.

Problem 2 (1.5 points)

In this exercise, we consider a simple machine with a MMU that implements virtual memory
based on segmentation. The main specifications of this machine are the following:

• The MMU hardware has 2 pairs of (base, bounds/limit) registers (i.e., a process can
at most have 2 segments).

• Virtual addresses (including the explicit segment ID) are stored on 14 bits and physical
addresses are stored on 16 bits.

• For simplification, we ignore here the management of segment (read/write, user/su-
pervisor) permissions.

Process P1 is currently running and the operating system has configured the MMU as
shown in the table below:

Segment Base Bound
0 0x2410 0x250
1 0x1230 0x400

2.1 For this process, what is the virtual address that allows accessing the data stored at
physical address 0x1500?

• Provide your answer in hexadecimal notations and explain

• If you think this process cannot access this physical address, explain why

2.2 Another process P2 tries to access virtual address 0x1400. Do you have enough infor-
mation to conclude whether process P2 can access this virtual address? (explain in a few
words)

page 2/13

Problem 3 (4.5 points)

Note: In this problem, all the exercises can be solved independently.

3.1 In this exercise, we consider an operating system similar to Linux designed for 64-bit
x86 processors. On the current version of these processors, the virtual addresses and the
physical addresses are both stored on 64 bits, but some of these bits are actually ignored:

• For virtual addresses, only the low 48 bits (i.e., bits 0 to 47) are meaningful.

• For physical addresses, only the low 52 bits (i.e., bits 0 to 51) are meaningful.

The default page size is 4 kB. For this page size, the structure is described as follows:

• It is composed of 4 different types of structures: PML4 (Page Map Level 4), PDPT
(Page Directory Pointer Table), PD (Page Directory), PT (Page Table).

• CR3 corresponds to the privileged CPU register that points to the root of the currently
active paging structure. This root is a PML4.

• Each instance of each structure is stored in a 4 kB page, whose first address is a multiple
of 4096.

(a) In a valid entry of a structure, does the page number of the next level correspond to
a virtual page number or a physical page number? For example, does a valid PDPT entry
store the virtual page number or the physical page number of the page that stores a PD?
Briefly justify your answer.

(b) We consider the following scenario: the processor is executing the (user-level) code of
an application. The next instruction to be executed consists in loading a 64-bit value from
memory into a CPU register.

• The instruction has already been fetched and decoded by the processor.

• Reading a 64-bit value from main memory takes 100 ns.

• The costs of a TLB lookup/insertion are negligible. Similarly, the costs of a (L1/L2/L3)
CPU cache lookup/insertion are negligible.

• The target virtual address is valid and authorized for the application.

• The target page is currently stored in main memory (no need to access the swap space).

In the worst case, how long will it take for the machine to complete the execution of this
instruction ? Briefly justify your answer.

page 3/13

(c) Considering the same assumptions as before, how long will it take for the machine to
complete the execution of this instruction in the best case? Briefly justify your answer.

3.2

Note: In this exercise, we consider the same paging structure as in Exercise 3.1, with the
same sizes as in Exercise 3.1 for virtual and physical addresses.

We study the implementation of page replacement policies, that is, the policy used to
select the pages that should be removed from physical memory to make space for new pages,
when running out of physical memory space.

(a) We have seen in class that policies used in practice try to approximate the Least-
Recently-Used policy. Explain what are the main reasons that make Least-Recently-Used a
good replacement policy in this context. (Reasons could be related to the way the applica-
tions, the operating system, or the hardware are working).

(b) The solutions studied in class use a single bit per page and the clock algorithm to
implement a pseudo-Least-Recently-Used policy for page replacement. A group of students
decides to implement its own policy, with the main goal of identifying more accurately the
Least-Recently-Used pages.

To test their idea, they get access to an experimental processor with some advanced
features. Specifically, in this processor, the MMU can be configured to save a timestamp
each time a page is accessed.

The proposed solution works as follows:

• To better identify the least recently used page, a timestamp is saved in each Page Table
Entry, and updated each time the corresponding page is touched, thanks to the new
feature provided by the experimental processor.

• To select a page for eviction, the algorithm first selects K present pages randomly
(Discussing how to implement this random selection is out of scope of this question).
Then, among those K pages, the page to evict is chosen using the following criteria:

1. Pages that are not marked as dirty are considered first

2. The non-dirty page with the oldest timestamp is evicted.

3. If no non-dirty page exists among the K selected pages, the dirty page with the
oldest timestamp is evicted.

After implementing and testing their new solution, they make the following observations:

(A) It is possible to store a timestamp over 12 bits without allocating any additional data
structure compared to the original solution.

page 4/13

(B) The proposed solution provides significant improvements compared to an alternative
design that would work in the exact same way but without taking into account whether
pages are dirty.

(C) In case where the physical memory of the system is only partially used (that is, there is
no need for page eviction), applications run slower with the proposed solution compared
to the algorithm studied in class.

For each of these observations independently, explain the reasons behind the observation.

3.3 In this exercise, we consider a MMU (memory management unit) design inspired from
the one used in ARM 32-bit processors (ARMv7A architecture), with some simplifications.

The principle of this MMU has some similarities with the one of Intel processors, but
there are also some differences, especially regarding the size of the elements that compose a
paging structure. The main characteristics are summarized as follows:

• Virtual addresses are stored on 32 bits.

• Physical addresses are stored on 32 bits.

• The hierarchical paging structure has two levels: L1 and L2.

• An L1 structure has a size of 16 kB (214 bytes) and each entry has a size of 4 bytes.
The starting address of an L1 structure must be aligned on 16 kB (i.e., must be a
multiple of 214).

• Each L2 structure has a size of 1 kB (210 bytes) and each entry has a size of 4 bytes.
The starting (physical) address of an L2 structure must be aligned on 1 kB (i.e., must
be a multiple of 210).

(a) Given a virtual address 0x12345678, describe how one should proceed to go through
the paging structure and identify the corresponding physical address.

(b) List 2 advantages and 2 drawbacks of this design compared to the 2-level paging struc-
ture of Intel x86 32-bit processors (also a 2-level paging structure but where both the L1
and L2 structures have a size of 4kB)?

For each point, justify briefly.

Problem 4 (2 points)

A team of hardware and software engineers is working on the design of a new computer
platform. Given that this is a completely new product, there are no constraints of back-
wards compatibility with existing applications. Besides, the team has full control over the
hardware design, the operating system design, and the design of the main applications.

page 5/13

Below is a list of technical statements made by some of the team members. For each of
the statements, you are asked (i) to say if the highlighted part of the text (in italic font)
is technically correct or incorrect and (ii) to briefly justify your answer. Expected answer
length: about 5-10 lines for each statement.

Notes:

• In this exercise, the part of the text that is not in italic font must be assumed as being
correct. Only the highlighted part is subject to discussion/debate.

• Each statement (a, b, . . .) must be considered independently from the others (each state-
ment is about a distinct product).

• If a statement contains several claims (for example: “technique X is faster and has no
drawback”), each claim must be assessed. A single incorrect claim renders the whole
statement incorrect.

Statements:

(a) Our CPU design is quite different from the one of Intel processors regarding the manage-
ment of memory operations. Indeed, every TLB miss is managed by a software handler
(provided by the operating system). Similarly, every cache miss from the L1 cache is
also managed by a software handler. Compared to the Intel design, our design requires
more kernel code but is more efficient because the OS can choose the most efficient cache
replacement policy for each cache and each process.

(b) Our default memory allocator uses a linked list of free blocks with a “next-fit” policy
and an immediate block coalescing strategy. We have noticed that some of our main
applications suffer from severe external fragmentation regarding the management of their
memory heap. In addition, some of these applications also suffer from memory leaks.
For the moment, we do not have the time to investigate these issues in details, at the
level of each application. Nonetheless, we believe that we have found a generic and fairly
effective way to reduce memory waste. We will replace the above allocator with another
one, which will always round up the requested block size to next power of two.

(c) Our platform hosts multiple applications running in parallel. However, one of these
applications has a specific role and runs on a single, dedicated CPU core (that is, no
other application run on this core). The application is concurrent and based on a single
process with multiple threads. It frequently creates and destroys threads. On the other
hand, it uses very little amount of memory, and does not interact much with I/O devices.
We will use a user-level (also known as “N:1”) implementation for the threads of this
application (instead of a kernel-level implementation). This choice will improve the
performance of the application and should not have any drawback.

page 6/13

Part II (remember to use a separate answer sheet for this part)

Note that the signature of the main synchronization functions is
provided in appendix.

1 About file systems and I/O devices (2 points)

1.1 The data block associated with a directory contains an inumber for each file included
in this directory. Explain how one can access the content of a file using its inumber.

1.2 One of the challenges associated with the design of file systems is the fact that a file
system typically stores many small files and also some big files. Describe one design principle
used in some file systems that takes into account this constraint and explain.

1.3 We have seen during the lectures that a system crash (for instance, due to a power
outage) during an operation on the file system can leave the file system in an inconsistent
state. This is due to the fact that one operation might require several writes. For instance,
if one considers the operation of appending user data as one data block to an existing file,
it requires writing at least the data bitmap, the inode of the file, and the data block.

For each of the following crash scenarios, tell: (i) if the file system is in an inconsistent
state and (ii) if user data is lost (briefly justify your answer):

(a) The data block and the inode have been written but not the bitmap.

(b) The data block and the bitmap have been written but not the inode.

(c) The inode and the bitmap have been written but not the data block.

1.4 One of the solutions to be able to recover the file system in a consistent state after
a failure is to use journaling. Before applying a modification operation, this operation is
written into a journal that is also stored on the Hard-Disk Drive (HDD).

A technique that can be used to improve the performance of journaling techniques is
delayed checkpointing. Checkpointing is the name given to the step that correspond to
applying a modification to the file system, after it has committed in the journal. With
delayed checkpointing, the operations are not applied immediately. Instead, we wait until a
few operations have been committed to apply all of them.

Discuss the advantages and the drawbacks of this approach for the case of a file system
stored on a HDD.

page 7/13

2 Some synchronization problems (3 points)

2.1 Figure 1 presents a solution to the critical section problem for N threads. The presented
code is for thread i.

1 int busy = 0;

2 int not_turn = 0;

3

4 enterCS () {

5 not_turn = i

6 while (test_and_set (&busy) == 1 && not_turn == i){;}

7 }

8

9 exitCS () {

10 busy = 0;

11 }

Figure 1: Critical section for N threads – code of thread i

(a) Define the three properties associated with the implementation of a critical section.

(b) Does the algorithm presented in Figure 1 ensure the 3 properties of a critical section?
Answer YES or NO, and:

• If your answer is YES, discuss the advantages of this solution compared to Peter-
son’s algorithm.

• If your answer is NO, explain the problem and provide an execution scenario.

2.2 I have found on the Web a new thread synchronization library. Contrary to the POSIX
interface, in this library the cond wait() function takes a single parameter, which is a pointer
to a condition variables.

To allow more efficient executions, this library will allow calling cond wait() without
grabbing a mutex first. Apart from this point, condition variables in this library work in the
exact same way as in the pthread library.

Taking the example of a consume function in a typical producer-consumer algorithm, it
will be possible to write it as described in Figure 2.

In your opinion, with this new library, will the consumer function presented in Figure 2
be correct? Answer YES or NO and:

• If your answer is YES, explain why this new implementation can be more efficient than
an implementation based on the pthread library.

• If your answer is NO, explain the problem and provide an execution scenario.

page 8/13

1 int consume(void){

2 int elem;

3

4 while(count == 0){

5 cond_wait (& cond_consumer);

6 }

7

8 mutex_lock (&mutex);

9

10 elem = buf[index];

11 index = (index + 1) % BUFFER_SIZE;

12 count --;

13

14 cond_signal (& cond_producer);

15 mutex_unlock (& mutex);

16

17 return elem;

18 }

Figure 2: A consumer function implementation

2.3 The reader-writer problem is a synchronization problem where some reader threads
might read shared data and some writer threads might modify this shared data. If a writer
wants to modify data, it must first get exclusive access to the data. On the other hand,
multiple readers should be able to read at the same time.

Figure 3 describes a solution to the reader-writer problem. Before starting reading the
data, a reader has to call the startRead() function. It must then call endRead() when it
finishes. Similarly, a writer has to call startWrite()/endWrite() when it starts/finishes
writing respectively.

In your opinion, does the code provided in Figure 3 solve the reader-writer problem for
multiple readers and multiple writers.? Answer YES or NO and:

• If your answer is YES, discuss whether the solution would still work if the 2 calls to
cond broadcast() are replaced with cond signal().

• If your answer is NO, explain the problem and provide an execution scenario.

page 9/13

1 /* global variables */

2 int readerCount = 0:

3 int writer = 0;

4 mutex_t mutex = MUTEX_INITIALIZER;

5 cond_t cond = COND_INITIALIZER;

6

7 void startRead(void) {

8 mutex_lock(&mutex);

9 while(writer == 1) { cond_wait(&cond, &mutex); }

10 readerCount = readerCount + 1;

11 mutex_unlock(&mutex);

12 }

13

14 void endRead(void) {

15 mutex_lock(&mutex);

16 cond_broadcast(&cond);

17 readerCount = readerCount - 1;

18 mutex_unlock(&mutex);

19 }

20

21 void startWrite(void) {

22 mutex_lock(&mutex);

23 while((readerCount > 0) || (writer == 1)) { cond_wait(&cond, &mutex);}

24 writer = 1;

25 mutex_unlock(&mutex);

26 }

27

28 void endWrite(void) {

29 mutex_lock(&mutex);

30 cond_broadcast(&cond);

31 writer = 0;

32 mutex_unlock(&mutex);

33 }

Figure 3: Reader-Writer synchronization

3 Multi-thread programming (5 points)

We would like to implement a library that provides advanced synchronization mechanisms
between threads.

The general instructions below apply to all questions:

page 10/13

• You are allowed to introduce any global variable you want, as well as an init() function
if need be.

• Describe your code in C. Strict correctness of the syntax in C will not be evaluated
but your notations should be clear enough. No need to comment the code.

• Regarding the synchronization primitives that you can use, carefully read the specific
instructions associated with each question.

3.1 The first synchronization mechanism we consider is a special case of the producer-
consumer problem, where consumers only want to consume the last value produced. Such a
mechanism, called monitoring channel, can be used to monitor changes in the configuration
of a system.

In this exercise:

• We assume that the monitoring channel stores Integers

• As a consequence of the specification of the problem, a single Integer is used to store
the most recent value of the monitoring channel: there is no need to maintain an
array of values since only the last inserted value is useful.

More specifically, two functions are used to access a monitoring channel, that are spec-
ified as follows:

• void monitoring channel put(int val): Called by a producer thread to insert a
new value in the monitoring channel. The function never blocks the calling thread.
If the previous value was not consumed, it is over-written.

• int monitoring channel get(void): Called by a consumer thread to get the most
recent value from the monitoring channel. A value can be consumed by only one
consumer. The function blocks the calling thread if there is no new value to consume.

Specific instructions:

• Implement the functions monitoring channel put() and monitoring channel get()

using semaphores.

• The solution should work with multiple producers and multiple consumers.

3.2 We want to implement a basic synchronization mechanism between threads called
waitable event.

A waitable event is a mechanism to which is associated an integer variable:

• It allows threads to wait until the event variable is set to a specific positive value.

• The event can be set to a positive value only if it was previously reset.

page 11/13

The following functions are associated with a waitable event:

• void waitable event set(int val): Set the value to val only if the waitable event

was previously reset. Otherwise, does nothing. Calling threads are never blocked

• void waitable event reset(void): Reset the value of the waitable event. This
function always succeeds and never blocks the calling thread.

• void waitable event wait(int val): Blocks the calling thread until the value of
the waitable event is val.

Note that if the function waitable event reset() is called shortly after a call to the
function waitable event set() and some waiting threads have not been able to exit the
function waitable event wait(), they might be blocked again.

Specific instructions:

• Implement the solution using only atomic operations as synchronization mechanism.

• Your solution should work with any number of threads.

• Your solution can induce busy waiting.

• To design your solution, you can take advantage of the fact that threads can only wait
for positive values.

3.3 We want to implement one more synchronization mechanism between threads called
controlled barrier.

Contrary to the traditional barrier mechanism, the criteria to unblock threads from a
controlled barrier is not that N threads have reached the barrier. Instead, threads blocked
at the barrier are unblocked if another thread calls controlled barrier unblock().

The controlled barrier mechanism provides the two following functions:

• void controlled barrier wait(void): Blocks the calling thread until the next call
to controlled barrier unblock().

• void controlled barrier unblock(void): Unblocks all the threads that have called
controlled barrier wait() before the call to controlled barrier unblock().

Specific instructions:

• Implement the solution using mutexes and condition variables.

• The solution should work for any number of threads

• The specification of the problem implies that a controlled barrier can be used
multiple times

page 12/13

Appendix

Please find below a list of the synchronization primitives available:

Mutexes

• mutex: variable of type pthread mutex t

• pthread mutex init(&mutex, ...): initialize the mutex

– The macro PTHREAD MUTEX INITIALIZER can be used to initialize a mutex allo-
cated statically with the default options

• pthread mutex lock(&mutex)

• pthread mutex unlock(&mutex)

Condition Variables

• cond: variable of type pthread cond t

• pthread cond init(&cond, ...): initialize the condition

– The macro PTHREAD COND INITIALIZER can be used to initialize a condition vari-
able allocated statically with the default options

• pthread cond wait(&cond, &mutex)

• pthread cond signal(&cond)

• pthread cond broadcast(&cond)

Semaphores

• sem: variable of type sem t.

• sem init(&sem, int pshared, unsigned int value): initialize the semaphore to
value. Set pshared to 0 for a semaphore to be shared between threads.

• sem wait(&sem)

• sem post(&sem)

Atomic operations

• test and set(type *ptr)

• fetch and add(type *ptr, type val)

• compare and swap(type *ptr, type oldval, type newval): returns true on suc-
cess.

page 13/13

