
Université Grenoble Alpes
M1 MoSIG

Academic year 2024-2025

Principles of Operating Systems and Concurrent

Programming — 1nd Midterm Exam

October 2024

• Duration: 1 hour

• Authorized documents: One handwritten A4 sheet of paper

1 Some statements (5 points)

For each exercise with a multiple choice question, simply answer (on your separate answer sheet)
by indicating the question number followed by one or several letters corresponding to the correct
statement(s) — you are not required to justify your answers.

Note that, for each question, there is always at least one correct statement, and possibly several

correct statements. A question without any answer is considered empty (no points). A single

mistake in an answer (i.e., exactly one missing correct statement or one incorrect statement) voids

half of the points allocated for the question. A number of mistakes greater than one voids all the

points allocated for the question (there are no negative points).

1.1 Among the following statements, which one(s) is (are) true?

(a) A modern CPU chip typically contains several caches (from Level 1, very fast but very
small, to the last level, bigger and slower).

(b) It is faster to search for a cache line in a 2-way associative cache compared to a 8-way
associative cache.

(c) Reading a 64-bit variable from a CPU cache is approximately 10 times faster than reading
the same data from a persistent disk.

(d) A CPU cache is only efficient for processes for which the total amount of memory
allocated by the process is less than the size of the cache.

page 1/6

1.2 Among the following statements, which one(s) is (are) true?

(a) If the paging structure of a process was small enough to entirely fit in some registers of
the CPU, then the concept of TLB would be useless.

(b) Using a multi-level paging structure (instead of a single-level paging structure, like a flat
table) can increase the average time needed to handle a TLB hit.

(c) Using a multi-level paging structure (instead of a single-level paging structure, like a flat
table) can increase the average time needed to handle a TLB miss.

(d) Using a multi-level paging structure (instead of a single-level paging structure, like a flat
table) can increase the average time to handle a CPU cache miss.

1.3 Among the following statements, which one(s) is (are) true?

(a) Using fix-size blocks to implement a heap memory allocator induces external fragmen-
tation if the blocks allocated by the program have different life times.

(b) Using fix-size blocks to implement the malloc function induces internal fragmentation
in the virtual memory of the processes.

(c) In most cases, when an application invokes the malloc function to request a small block
size (e.g., 10 bytes), the execution of the function completely takes place in user mode.

(d) For a heap memory allocator, using a worst fit strategy can be good to reduce internal
fragmentation.

1.4 We consider the following code snippet in C taken from the implementation of a heap
memory allocator (implementation of the mem alloc() function), similar to the one imple-
mented during lab 2. The variable selected block corresponds to the block selected from
the free list to handle the current memory allocation request.

1: mem_std_free_block_t *new_free_block=

(mem_std_free_block_t*)((char*)selected_block + header_size

+ payload_size + footer_size);

2: new_free_block->next = selected_block->next;

Related to this code snippet, which of the following statement(s) is (are) true?

(a) The variable new free block->next stores the physical address of the next free block
in the free list, if any.

(b) The variable new free block->next is stored in the stack of the process.

(c) On line 1, replacing the cast to (char*) with a cast to (int*) would not change the
value stored in variable new free block.

(d) On line 1, replacing the cast to (mem std free block t*) with a cast to (int*) would
not change the value stored in variable new free block.

page 2/6

1.5 Among the following statements, which one(s) is (are) true?

(a) Some switches from user mode to kernel mode are explicitly triggered by the latest
executed instruction of user-level code (e.g., system calls) but some others are due to
externals events (e.g., timer interrupts).

(b) The typical duration of 10 ms for the time quantum of an operating system scheduler
is motivated by the fact that, on most machines, the hardware cannot generate timer
interrupts with a higher frequency.

(c) Performing a context switch between processes requires at least two mode switches.

(d) In Linux, for security reasons, a system call can only be executed from trusted library
code (for example, from a function like printf or malloc) and cannot be executed from
user code.

2 Memory allocation (4 points)

2.1 We consider a memory allocator using a linked list to keep track of free blocks. The
allocator is designed with the following constraints: each block requires a 4-byte header and
there is no alignment constraint.

Answer the following question assuming that the free list contains only three blocks: 34
bytes, 20 bytes and 56 bytes (in that order, including the header bytes).

Describe a sequence of malloc calls that succeeds with a best-fit policy and fails with a
first-fit policy.

2.2 A students makes the following claim: “My machine has a 64-bit processor (and a
64-bit compatible operating system). As a consequence, each process has a virtual address
space with a very large capacity. Furthermore, I use an operating system that implements
virtual memory via paging with a single page size (e.g., all pages have a size of 4096 bytes).
In such a situation, implementing an efficient heap memory allocator is not important (i.e.,
the allocator can introduce heavy fragmentation). Indeed, in such a case, having a highly
fragmented heap does not introduce any drawback.”

This student is not correct.

• List 2 major drawbacks that could be observed with an inefficient heap allocator in
this situation.

• For each drawback, provide a detailed explanation.

• Expected answer length: 5-10 lines

page 3/6

3 Segmentation (5 points)

In this exercise, we consider a simple machine with a MMU that implements virtual memory
based on segmentation. The main specifications of this machine are the following:

• The MMU hardware has 4 pairs of (base, bounds/limit) registers (i.e., a process can
at most have 4 segments).

• Virtual addresses (including the explicit segment ID) are stored on 12 bits and physical
addresses are stored on 14 bits.

• For simplification, we ignore here the management of segment (read/write, user/su-
pervisor) permissions.

3.1 Answer the following questions (explain briefly your computation):

(a) What is the maximum size of a segment (in bytes)?

(b) What is the maximum size (in bytes) of the physical memory for this machine?

3.2 Process P1 is currently running and the operating system has configured the MMU as
shown in the table below:

Segment Base Bound
0 0x1C00 0x100
1 0x3140 0x250
2 0x0300 0x040
3 0x0000 0x080

Which of the following virtual memory addresses can be accessed by the running process?
(For each case, explain in a few words)

(a) 0xC6F

(b) 0x320

(c) 0x61D

3.3 We consider the same setup as the one described in the previous question. Which of
the following physical memory addresses can be accessed by the running process? (For each
case, explain in a few words)

(a) 0x0C6F

(b) 0x1280

(c) 0x324C

page 4/6

4 Paging (6 points)

We consider a machine with a single Intel x86 32-bit CPU, configured to use a 2-level paging
structure and a (single) page size of 4096 bytes — as studied in the lectures. The format of
the main data structures is provided in Figure 1. We also assume that disk swapping is not
enabled/supported by the operating system.
Additional reminders:

• Each virtual address is stored on 32 bits.

• Each physical address is stored on 32 bits.

• The size of a page directory (PD) is 4096 bytes.

• The size of a page table (PT) is 4096 bytes.

• The size of a page directory entry (PDE) is 4 bytes.

• The size of a page table entry (PTE) is 4 bytes.

4.1 For this question, we assume that 1 page over 2 in the virtual address space of the
process is configured as valid (page 0 is valid, page 1 is not valid, page 2 is valid, page 3 is
not valid, etc.).

Answer the following questions and justify briefly:

(a) What is the size (in number of pages) occupied by the paging structure of the process if
we assume a flat table?

(b) What is the size (in number of pages) occupied by the paging structure of the process if
we assume the paging structure of x86 processors described above?

4.2 For each of the following cases, what is the amount of (physical) memory needed to
store the paging structure of one process? (Briefly justify your answers.)

(a) There is only a single valid address range: 0x00800000 to 0x009FFFFF

(b) There are 3 valid address ranges:

• range 1: 0x00800000 to 0x009FFFFF

• range 2: 0x00B00000 to 0x04FFFFFF

• range 3: 0x64000000 to 0x70FFFFFF

page 5/6

4.3 We consider a process for which the paging structure has the following characteristics:

• Only 2 PDE entries are valid:

– Entry number 100 and entry number 101 (decimal numbers)

• In the PT pointed to by entry 100, only the second half of the pages are valid.

• In the PT pointed to by entry 101, only the first half of the pages are valid.

What is/are the valid range(s) of virtual addresses for this process? (Briefly justify your
answers)

3-26 Vol. 3

PROTECTED-MODE MEMORY MANAGEMENT

3.7.1 Linear Address Translation (4-KByte Pages)
Figure 3-12 shows the page directory and page-table hierarchy when mapping linear
addresses to 4-KByte pages. The entries in the page directory point to page tables,
and the entries in a page table point to pages in physical memory. This paging
method can be used to address up to 220 pages, which spans a linear address space
of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

• Page-directory entry — Bits 22 through 31 provide an offset to an entry in the
page directory. The selected entry provides the base physical address of a page
table.

• Page-table entry — Bits 12 through 21 of the linear address provide an offset to
an entry in the selected page table. This entry provides the base physical address
of a page in physical memory.

• Page offset — Bits 0 through 11 provides an offset to a physical address in the
page.

Memory management software has the option of using one page directory for all
programs and tasks, one page directory for each task, or some combination of the
two.

Figure 3-12. Linear Address Translation (4-KByte Pages)

0
Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE
�1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

20

Figure 1: x86 address translation with 4-kilobyte pages (source: Intel documentation)

page 6/6

