
Lab 1: About Memory and Some Useful Tools

Master M1 MOSIG, Univ. Grenoble Alpes (Ensimag / UFR IM2AG)

2025

The files for this lab are provided on Moodle (os_lab1.tar.gz)1.

I. Stack and Heap

The stack and the heap are two distinct memory segments defined by the system for each process
so that they can store their data.

• The stack is used to automatically allocate memory for the variables defined within func-
tions. Their size is known at compile time and for such variables, memory is automatically
reserved when the program enters the function and released when the program leaves the
function. It is thus used for temporary storage of information and the use of this information
is restricted to the lifespan of the function call.

• The heap is used to store data whose size is unknown at compile time and/or whose lifetime
may be arbitrary (and hence possibly unknown at compile time). The memory for this data
is to be managed explicitly by the developer, using standard C functions such as malloc
and free (see man malloc).

Consider the following code (provided in ex1.c) and answer the question:

#include <stdio.h>

int min(int a, int b, int c){
int tmp_min;
tmp_min = a <= b ? a : b;
tmp_min = tmp_min <= c ? tmp_min : c;
return tmp_min;

}

int main(){
int min_val = min(3, 7, 5);
printf("The min is: %d\n", min_val);
exit(0);

}

1The tar command (see man tar) can be used to extract the archive. More specifically, use the following command
to extract a tar.gz file: tar zxvf myfile.tar.gz

1

Question I.1: In which memory segment are the variables a, b and c allocated ? When is the
memory allocated to them released ? What about the tmp_min variable ?

Let us now consider the following code (provided in ex2.c):

int* vect_sum(int *v1, int *v2, int size){
int *r, i;
r = malloc(sizeof(int) * size);
for(i = 0; i < size; i++){
r[i] = v1[i] + v2[i];

}
return r;

}

int main(){
int v1[] = {1, 2, 4, 7};
int v2[] = {3, 4, 9, 2};

int *p_result = vect_sum(v1, v2, 4);
/* prints the content of the given vector */
print_vect(p_result, size);
exit(0);

}

Question I.2: What value is contained by variable r after the call to malloc() inside function
vect_sum()? In which memory segment is this value stored ?

Question I.3: What is the exact meaning of the assignment: r[i] = v1[i] + v2[i]; ? This
assignment results in a (memory) write instruction. In this program, in which memory seg-
ment does this write happen ?

Question I.4: Write a program that behaves in the same way without using malloc(). You
may need to change the parameters of function vect_sum().

Question I.5: What is the life cycle of a stack-allocated variable ? of a heap-allocated variable ?

II. Illegal memory accesses

Correct memory allocation is required for each variable to lie at a distinct place in the memory
space. Pointers are very useful, but they also allow programmers to attempt accessing memory
addresses that have not been allocated. If a program tries to read or write at such an address, it
may be killed by the operating system with the SIGSEGV signal2. A memory access that may raise
such a signal is called an illegal memory access.

Question II.1: Which lines of this piece of code are illegal memory accesses? Which one would
raise a warning using a “picky” compiler 3?

2“SIG” stands for “signal” and “SEGV” stands for “segmentation violation”, a historical expression.
3In practice, the pickiness of a compiler in raising warnings can be configured through options to activate using flags.

A detailed documentation can be found here (https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.
html) for gcc. The provided Makefile sets the following flags, which enable a large set of diagnostic messages:
-Wall -Wextra -pedantic.

2

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

1. int *pa = 2;

2. *pa = 34;

3. int b = 4, *pb = &b;

4. *pb = 5;

5. int *pc;

6. printf("pc is equal to %d\n", pc);

7. printf("*pc is equal to %d\n", *pc);

8. pc = malloc(sizeof(int));

9. *pc = -2;

10. pa = pc;

11. free(pa);

12. pc = -4;

III. Pointer arithmetic in C

In this exercise, we consider the program defined by the source file pointer_arithmetic.c.
Answer the following questions after having read the source code and executed the program.

Question III.1: Based on the addresses displayed by the program, compute the distance in bytes
between the initial address and the final address pointed to by p1. Explain the reason for
the result you obtain.

Question III.2: Modify pointer_arithmetic.c to compute and display the difference be-
tween the initial and the final value of the pointer p1. You should obtain the same result
as the one you computed in the previous question.

Question III.3: Observe the difference between the initial and the final value of p2. Is the result
consistent with the value observed for p1?

Question III.4: Observe the difference between the initial and the final value of p3, p4, and p5.
What can you conclude?

Question III.5: As you may have noticed, you are provided with a Makefile to automatize the
compilation of the programs (More about Makefiles to come in the next exercise). To compile
the program for this exercise, you can simply run:

make pointer_arithmetic.run

You should notice a warning message generated by the compiler. This warning message is
generated thanks to the use of the -Wpointer-arith compilation flag. Explain the reason
for this message.

Question III.6: Observe the value of p6 and p7 as well as the result of the computation D. Explain
this result.

3

IV. About Makefiles

A Makefile is provided to you in the archive os_lab1.tar.gz. Makefiles are used to automatize
the compilation of your code using the make utility.

In case you don’t know about the notion of Makefile, the provided file includes detailed comments
that explain how it works. Do not hesitate to look for additional resources on Internet.4

To check that you understand how a Makefile works, open the provided Makefile and answer the
following questions:

Question IV.1: List the commands that are going to be executed by make when the following
command is executed:

make ex1.run

Question IV.2: Same question for the following command:

make ex2.run

Start by explaining the variables ’$@’ and ’$<’.

Question IV.3: Same question for the following command:

make prog_0.run

Start by explaining the use of the symbol ’%’ in a rule.

Question IV.4: Same question for the following command:

make all

Question IV.5: At the end of the Makefile, a phony target (named clean) is defined using the
keyword .PHONY. Explain the purpose of such phony targets.

V. Gdb

gdb is a debugging tool. It allows step-by-step execution during which the user can explore the
state of the memory (variables, pointers, registers, stack, ...).

Question V.1: During your training week you (may) have been provided with a simple gdb
tutorial. If you have not been through it yet, it is time to do so. This tutorial is provided to
you in the file gdb-tutorial_EN.c. Open the file and follow the instructions.

4For example:

• https://makefiletutorial.com/

• https://www.gnu.org/software/make/manual/make.html

4

https://makefiletutorial.com/
https://www.gnu.org/software/make/manual/make.html

VI. Valgrind

valgrind is a tool used to track runtime errors. It simulates the execution of a given executable
inside a virtual system, and records any illegal access to the memory as well as other errors.

To use it, simply run:

$ valgrind ./my_executable

The programs (with a "prog_" prefix) given in the archive for this lab are all syntactically correct
C programs, but they all misbehave at run time.

Question VI.1: Use valgrind to find and solve errors in the given C files5. valgrind is usually
very verbose; write down the valgrind errors that helped you and explain their meaning.
(If programs are compiled with the -g option valgrind is able to provide the source file name
and line where the error happened). You may also find the following options useful:

• To use gdb and valgrind together, see http://valgrind.org/docs/manual/manual-
core-adv.html#manual-core-adv.gdbserver-simple

• --leak-check=yes (to get information about memory zones that were never freed and
are definitely lost);

• --show-reachable=yes (to get information about memory that were never freed and are
still reachable).

VII. AddressSanitizer (ASan)

AddressSanitizer is another tool that can detect illegal memory accesses. However, it works
differently from valgrind. AddressSanitizer instruments the application source code, and
therefore, it requires recompiling the source code.

AddressSanitizer is integrated into gcc since version 4.8. It is for instance actively used in the
development of the chromium and firefox web browsers.

To use AddressSanitizer, compile your code with the appropriate flags:

$ gcc -g -fsanitize=address my_file.c -o my_exec_file

Then, you can run your program as usual.

Question VII.1: Observe the errors in programs with a "prog_" prefix using the
AddressSanitizer. Obviously, you should use the initial version of the codes, that
is, without the bug fixes.

5You might want to keep a copy of the initial code of the programs to be able to use them in the next exercise.

5

http://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.gdbserver-simple
http://valgrind.org/docs/manual/manual-core-adv.html#manual-core-adv.gdbserver-simple

Comparing Valgrind and AddressSanitizer: Both tools can be useful. Each of them may detect
errors that the other one is unable to detect. Regarding performance, AddressSanitizer is
much more efficient than Valgrind at the cost of requiring to recompile the application.

Question VII.2: If you are interested in learning more about AddressSanitizer, you can have
a look at:

• The Github repository: https://github.com/google/sanitizers/wiki/
AddressSanitizer

• The main publication related to this work: https://research.google.com/
pubs/pub37752.html

VIII. Observing processes virtual address space layout

About the proc file system In a Linux system, the /proc directory contains a hierarchy of
special files which represent the current state of the kernel.

Among the information that can be found in /proc, information about the current state of a
process PID can be found in the /proc/PID directory. For a detailed description of all the infor-
mation that can be found in /proc, we refer you to the man-pages: man 5 proc.

Among the virtual files available in /proc, we will focus on the information provided by
/proc/PID/maps. This file describes the state of the virtual address space of a process.

The command cat can be used to display the content of a file. Running "cat
/proc/self/maps" displays information about the virtual address space of the current process.

Question VIII.1: Which process does the displayed information refer to in this case?

Question VIII.2: We can see that each line of the maps file includes several fields. What does
each of these fields correspond to?

Question VIII.3: Observe the position of the stack and the heap in the virtual address space.
Based on what you know about their internal details, explain why they are positioned this
way.

Let us now compare the virtual address space of two processes.

Question VIII.4: What differences do you notice between two processes that are run with the
exact same command line (same program and same parameters)?

Question VIII.5: There is a good reason for these differences. Explain.

Bonus question 1: We can observe that the executable file executed by a process is mapped sev-
eral times at the beginning of the virtual address space. What do these different mappings
correspond to (remember "Lecture 1: Introduction")?

6

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://research.google.com/pubs/pub37752.html
https://research.google.com/pubs/pub37752.html

Bonus question 2: What differences do you observe between these mappings? Does this match
with the answer to the previous question? Try to explain.

We are now going to think about the kernel memory space.

Bonus question 3: Based on your observation of the address space of a process, figure out
where is the virtual address space of the kernel.

Bonus question 4: Why does it belong to the virtual address space of the user although the user
does not get access to it?

– Bonus –
Below this point, the exercises are optional.

IX. Recursive functions

int power(int a, int n){
if(n != 0)
return a*power(a, n - 1);

else
return 1;

}

Question IX.1: Make a rough estimation of the memory needed to compute power(2, 3).

Question IX.2: We provide you with the program rec.c: try to validate your estimation.

To do so, you can use the built-in6 gcc function void * __builtin_frame_address
(unsigned int level) that returns the address of the function frame (with level = 0,
returns the frame address of the current function)7

X. More of Gdb

Question X.1: We consider again the programs presented in Exercise I. Use gdb to visualize the
state and the evolution of the heap and the stack of the executed program.

Here are some useful gdb commands:

• x/nfu addr
x command is used to display the memory, starting from addr; n, f, and u are all op-
tional parameters that specify how much memory to display and how to format it.

– n: A decimal integer (default 1) that specifies how much memory (counting by
units u) to display.

6Built-in functions are functions not defined in the C standard.
7See https://gcc.gnu.org/onlinedocs/gcc/Return-Address.html

7

https://gcc.gnu.org/onlinedocs/gcc/Return-Address.html

– f: The display format: ‘s’ (null-terminated string), or ‘i’ (machine instruction). The
default is ‘x’ (hexadecimal) initially.

– u: the unit size. The unit size is any of ’b’ (Bytes), ’h’ (Halfwords – two bytes), ’w’
(Words – four bytes – default), ’g’ (Giant words – eight bytes).

• info frame
to get information about stack frames.

• p $sp
to get the value of the stack pointer.

• x/5i $pc-6
to print 5 instructions 6 words before the current program counter.

Question X.2: Try to use gdb to better understand memory usage for the recursive program
introduced in Exercise VIII.

XI. Observing the calls made by a program

Tools for observing the interactions of an application with the operating system (system calls and
libraries) can be useful. The tools strace and ltrace8 are two of them. Look at their documen-
tation and observe the obtained output when run with one of the program manipulated during
this lab (for instance, ex1.run).

– Additional Tips –
Please find below a few additional tips related to this lab.

XII. Automatically tracking dependencies to header files using GCC and Makefiles

In practice, it may happen that a .c source code file depends on several .h files. In this case, a
complete Makefile should know about these dependencies to ensure that the .c file is recompiled
if one of the corresponding .h files is modified.

Instead of manually keeping track of these dependencies, it is possible to offload this
burden to the C compiler and the Makefile by using simple changes in the Make-
file. See for instance the following documentation: https://nathandumont.com/blog/
automatically-detect-changes-in-header-files-in-a

XIII. Linters

Linters are tools for detecting problematic code patterns (i.e., pieces of code that are buggy or dirty
or useless or complex or error-prone). OCLint is an example of such a tool for C programs. Check
it out!

8Note that on some recent Linux distributions, ltrace is not available or does not work correctly. Other tools can be
used instead, such as latrace or uftrace. uftrace requires programs to be compiled with the -pg option, which
provides the necessary support for profiling.

8

https://nathandumont.com/blog/automatically-detect-changes-in-header-files-in-a
https://nathandumont.com/blog/automatically-detect-changes-in-header-files-in-a
http://oclint.org/

