
Lab 1: About Memory – Answers

Master M1 MOSIG, Univ. Grenoble Alpes (Ensimag / UFR IM2AG)

2025

I. Stack and Heap

Question I.1:

• Variables a, b and c are allocated in the stack.

• Memory is released when the function returns

• The same for tmp_min

Question I.2:

• Variable r contains the address of the beginning of the allocated memory block.

• Variable r is stored in the stack

Question I.3:

• The assignment means that the sum of the values contained at index i of arrays v1 and
v2 is stored at index i of array r.

• The write is made to the memory space pointed to by r, that is, in the heap.

Question I.4:

void vect_sum(int *v1, int *v2, int size, int *r){
int i;
for(i = 0; i < size; i++){
r[i] = v1[i] + v2[i];

}
}

int main(){
int v1[] = {1, 2, 4, 7};
int v2[] = {3, 4, 9, 2};
int v3[4];

vect_sum(v1, v2, 4, v3);
/* prints the content of the given vector */
print_vect(v3, size);

1

exit(0);
}

Note: Allocating large data items (for example, a large array or a large data structure) on the
stack is not a good practice: indeed, this may lead to a stack overflow, because the stack has a
relatively limited size.

Question I.5:

• A stack-allocated variable exists only inside the block where it is declared.

• A heap-allocated variable exists as long as it is not freed.

II. Illegal memory accesses

Question II.1:

• Illegal memory accesses:

– Line 2: Writing to the address pointed by pa (2) is not allowed
– Line 7: Accessing the content of pc which is a non-initialized pointer means access-

ing memory at a random address (and hence possibly forbidden).

• Warnings by the compiler:

– Line 1: initialization makes pointer from integer without a cast.” (or a variant such
as: incompatible integer to pointer conversion initializing ’int *’ with an expression
of type ’int’)

– Line 6:

* format ’%d’ expects argument of type ’int’, but argument 2 has type ‘int *’

* ’pc’ is used uninitialized
– Line 12: assignment makes pointer from integer without a cast (or a variant such

as: incompatible integer to pointer conversion assigning to ’int *’ from ’int’)

III. Pointer arithmetic in C

Question III.1:

• The distance is 8 bytes. Beware of the addresses that are displayed as hexa-decimal
numbers.

• Pointer p1 is a pointer of type unsigned long *. Adding one to the pointer shifts it
by the size of an unsigned long (in other words, sizeof(unsigned long)).

Question III.2:

The distance can be displayed using the following piece of code:

2

unsigned long *old_p1 = p1;
printf("\n\t\tp1 = %p\n", (void*)p1);
p1++;
printf("after p1++, \tp1 = %p \n", (void*)p1);
printf("distance (in bytes) between p1 and old_p1 = %lu\n",

(p1 - old_p1)*sizeof(unsigned long));

Question III.3:

The distance for p2 is 80, that is 10 times the size of an unsigned long.

Question III.4:

For p3, p4, and p5, the distance is 1 byte. Two main conclusions can be drawn from this
result:

• If allowed by the compiler, pointer arithmetic on pointers to void behave as with point-
ers to char.

• Unless you are really sure of what you are doing, you should generally perform pointer
arithmetic by using type casting to pointer types associated with data types whose
size is one byte. Concretely, this means that you should perform pointer arithmetic on
pointers defined as char* or uint8_t*, or otherwise use type casting to such types.

Question III.5:

The compiler raises a warning for the pointer arithmetic operation applied to the pointer of
type void*. Indeed, by definition there is no size associated to the type void. As such,
pointer arithmetic on a void* is illegal in C (but allowed by some compilers).

Pointer arithmetic using the void* type should be avoided (although it is tolerated by some
compiler settings).

Question III.6:

The value of D is 4. It does not mean that the absolute distance between the two pointers is 4.
It means that the distance is 4 times sizeof(unsigned long) (unsigned long* being
the types of the pointers used to run the computation of the distance).

This exercise shows you that pointer arithmetic in C is tricky and must be used with care (and
only when really necessary).

IV. About Makefiles

Question IV.1:

• gcc -c ex1.c -W -Wall -pedantic -g -std=c99

• gcc -o ex1.run ex1.o

3

Question IV.2:

The variables ’$@’ and ’$<’ are automatic variables.

• ’$@’ is the file name of the target of the rule

• ’$<’ is the name of the first prerequisite

As such, the commands that are executed are:

• gcc -c ex2.c -W -Wall -pedantic -g -std=c99

• gcc -o ex2.run ex2.o

Question IV.3:

The use of ’%’ allows writing pattern rules. The ’%’ can match any nonempty substring. It
enables writing generic rules. Hence the commands that are executed in this case are the one
of the pattern rule in the Makefile:

• gcc -c prog_0.c -W -Wall -pedantic -g -std=c99

• gcc -o prog_0.run prog_0.o

Question IV.4:

The target all is used by convention to define a rule that will build all what is needed to
make a complete build.

In our case, the target all has the list of all the executables as prerequisite. Hence, it will
force all executables that have not yet been built or for which a prerequisite has changed
since the last build to be built.

Question IV.5:

A phony target is one that is not really the name of a file; rather it is just a name for a recipe to
be executed when you make an explicit request. See https://www.gnu.org/software/
make/manual/html_node/Phony-Targets.html for more details.

VI. Valgrind

Question VI.1:

• prog_0.c: Invalid write line 20. The program tries to write to buf0 after it has been
freed.

• prog_1.c: Invalid write line 10. The array is too small because the allocated space is
only of ARRAY_SIZE bytes instead of ARRAY_SIZE * sizeof(int). Besides, there
is also a leak reported by Valgrind because the array is not deallocated (using free).

• prog_2.c: The call to read returns −1 because the file /usr/hostname does not exist
(and Valgrind displays a warning about it). As a consequence, line 20 triggers an access
to buf[-1], which is outside of the array and corrupts the r_count variable (this is

4

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html
https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

not detected by Valgrind). This results in calling print_vertical with an incorrect
value for the len parameter (too high value), which results in too many loop iterations
(going outside of the array), leading to an invalid read at line 12.

• prog_3.c: Invalid write at line 10. The memory for the array has not been allocated.

• prog_4.c: Invalid read at line 16. This comes from the fact that the size of the allo-
cated zone is not sufficient to store the string terminator (\0): the requested size should
be strlen(str1) + strlen(str2) + 1. Besides, once this problem is fixed, Val-
grind detects another issue (“Conditional jump or move depends on uninitialised value(s)”).
This problem comes from the fact that, in the second call to strncpy, the last param-
eter should be strlen(str2)+1 in order to copy the string terminator character (see
man strncpy). Also, there is a memory leak, as the dynamically allocated block is
never freed.

VII. AddressSanitizer (ASan)

See the previous exercise for a description of the errors in the programs.

VIII. Observing processes virtual address space layout

About the proc file system In a Linux system, the /proc directory contains a hierarchy of
special files which represent the current state of the kernel.

Among the information that can be found in /proc, information about the current state of a
process PID can be found in the /proc/PID directory. For a detailed description of all the infor-
mation that can be found in /proc, we refer you to the man-pages: man 5 proc.

Among the virtual files available in /proc, we will focus on the information provided by
/proc/PID/maps. This file describes the state of the virtual address space of a process.

The command cat can be used to display the content of a file. Running "cat
/proc/self/maps" displays information about the virtual address space of the current process.

Question VIII.1:

The process running cat.

Question VIII.2:

The answer can be found in the man-pages (man 5 proc). More specifically, in the para-
graph about /proc/[pid]/maps, we can read that the entries are:

• address: the address range in the process that the mapping occupies

• perms: the set of permissions

• offset: the offset into the file/whatever

• dev: the underlying device storing the file

5

• inode: the inode on that device (we’ll introduce inodes later in the semester, in the lec-
ture about file systems)

• pathname: the file that is backing the mapping

Question VIII.3:

The pseudo-paths [stack] and [heap] allow us to identify the stack and the heap in
/proc/[pid]/maps. The stack grows downwards, thus it is located at the top of the ad-
dress space. The [heap] is then positioned on the opposite side (i.e., at the bottom).

Question VIII.4:

Although the same regions appear, for most of them the starting address differs.

Question VIII.5:

Address space layout randomization (ASLR) is a security technique. It makes it harder for
an attacker to locate a specific memory region, and, in particular, to craft an attack based on
techniques like buffer overflows (such attacks are typically based on assumptions regarding
the precise location of the memory regions and the distance between them).

Bonus question 1: We could expect to boserve 3 regions corresponding to the 3 main segments
of a process address space (in addition to the stack and the heap):

• the executable code (text segment)

• the initialized global variables (data segment)

• the uninitialized global variables (bss segment)

However, things are more complex (see below).

Bonus question 2: First we should mention that, depending on how the executable you con-
sider is generated, you might observe 3 or 5 mappings of the executable.

In the case you observe 3 mappings. The first thing to observe is that each region
is mapped with different permissions: the first region can be read and executed; the second
region can be read; the third region can be read and written. This shows that the previous
explanation about the mapping is not correct: the variables in the data segment should be
writable.

In fact, the first region really contains the text segment. The second section contains read-
only information including information related to dynamic linking. The third region (with
read-write permission) contains both the data segment and the bss segment.

In the case you observe 5 mappings. The previous explanation is still valid but
2 more mappings have been added. This is because the executable region described pre-
viously has been divided into 3 regions: one that remains executable and still contains the
text segment, and 2 regions that are read-only because the data they contain do not need
to be executable. One of the created region includes information about dynamic linking
(among other things), the other includes the rodata segment (the read-only data).

6

Bonus question 3: We can see that the virtual address space of the process does not cover
the whole set of available addresses. It goes from 0x00000000 to something like
0x7ffffffff000. It means that a lot of addresses remain available in the address space.
The kernel is mapped somewhere in this remaining space (in an address range above the
one used by the application).

Bonus question 4: It simplifies system calls implementation: a system call does not require an
address-space switch; passing pointers as arguments to system calls is easier.

IX. Recursive functions

Question IX.1:

• Running power(2, 3) implies 4 calls to the power function. Each call to the function
requires creating a stack frame that contains the two parameters of the function (that
is 2 times 4 bytes for 2 integers). It also contains the return address of the function
(8 bytes). Finally, it includes the frame pointer (8 bytes), that is the value of the stack
pointer just before the function was called.
To summarize, each call to the function should use 2 ∗ 4 + 8 + 8 = 24 bytes

• Running the following code says that 128 bytes are used, that is 4 ∗ 32. The reason why
32 bytes are used for each frame is that (in the case of Linux/GCC) stack frames are
16-byte aligned (this remark applies both to Intel x86 architecture and to the Arm64
architecture)1, and so, each call to the function uses 32 bytes instead of 24.

void* last_frame;

int power(int a, int n){
if(n != 0)
return a*power(a , n - 1);
else{
last_frame = __builtin_frame_address (0);
return 1;

}
}

int main() {
void* first_frame = __builtin_frame_address (0);
int pt = power(2, 3);
printf("The power 3 of 2 is: %d\n", pt);
printf("amount of memory used: %d\n", first_frame-last_frame);

exit(0);
}

1For more information about memory alignment, see the following links:
– General principles: https://en.wikipedia.org/wiki/Data_structure_alignment
– Intel x86 ABI: https://en.wikipedia.org/wiki/X86_calling_conventions
– Arm64 ABI: https://johannst.github.io/notes/arch/arm64.html

7

https://en.wikipedia.org/wiki/Data_structure_alignment
https://en.wikipedia.org/wiki/X86_calling_conventions
https://johannst.github.io/notes/arch/arm64.html

