Principles of Operating Systems and Concurrent
Programming

Welcome!

Thomas Ropars

thomas.ropars@Quniv-grenoble-alpes.fr

2024


mailto:thomas.ropars@univ-grenoble-alpes.fr

Important Pointers

Class Web page
® https://ml-mosig-os.gitlab.io

® | ecture slides, agenda, and more

Moodle page

® https://im2ag-moodle.univ-grenoble-alpes.fr/cour
se/view.php?id=228

® |abs, news, and discussion forum


https://m1-mosig-os.gitlab.io
https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=228
https://im2ag-moodle.univ-grenoble-alpes.fr/course/view.php?id=228

Important Pointers

Reference book

® https://pages.cs.wisc.edu/~remzi/0STEP/

® Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau.
Operating Systems: Three Easy Pieces.

® Electronic book, freely available on-line

® More references? https://mi-mosig-os.gitlab.io/reso
urces/#reference-books


https://pages.cs.wisc.edu/~remzi/OSTEP/
https://m1-mosig-os.gitlab.io/resources/#reference-books
https://m1-mosig-os.gitlab.io/resources/#reference-books

Contacts

Teaching staff

® Thomas Ropars (thomas.ropars@univ-grenoble-alpes.fr):
Lectures (and Labs)

¢ Nicolas Homberg (nicolas.homberg@univ-grenoble-alpes.fr):
Labs

¢ Albin Petit (albin.petit@inria.fr): Labs

Contacting us
® Email is the fastest and most convenient way to reach us
Add [M1 Mosig - OS] to the subject of your emails

® For questions of general interest: A discussion forum is open
on Moodle



Administrivia

e Schedule

— Lectures: 1 slot (3 hours) per week
+ Usually on Tuesday afternoons (1:30-4:45 pm)

— Practical work / lab sessions: 1 slot (3 hours) per week
+ Usually on Thursday mornings (8:00-11:15 am)

— No OS class/lab on week 44 (fall vacation)

* Warning: Some modifications may occur during the semester.
Please check regularly both:
— The web page of the class
— ADE



Administrivia
« Exams

— Midterm exam(s):
+ At least two (details to be confirmed)
» Will be announced/confirmed 1 week in advance (in class)

— Final exam: week 49 or 50, 3 hours (to be confirmed)

— Warning: No documents allowed, except 1
handwritten paper sheet (A4 format)



Grading

® 20% from practical projects
e 20% from midterms

® 60% from the final exam



Style

* You must turn in a design document along with your code
— Remember that figures are often very useful to convey/summarize
design ideas
— Please respect the document format(s) imposed by the teaching staff
(e.g., PDF)

* Instructors will manually inspect your code for correctness
— Does the code respect the specification?
— Does it actually implement the described design?
— Does it handle corner cases (e.g., handle malloc failure)?

* Instructors will deduct points for error-prone code without errors
— Do not use global variables if local ones suffice
— Do not use obscure/misleading names for variables/functions



Style (continued)

* Your code must be easy to read
— Keep lines (and when possible) functions short

— Use a uniform coding style (try to match existing
code)

— Indent your code in a clean and consistent way

— Put comments on structure members, global
variables, functions

— Do not leave lots of commented-out garbage code



Assignment requirements

* Project deadlines are firm

* If you run into trouble, contact instructors in
advance to ask for an extension

* Do not look at other people’s solutions to projects

* You can read but must not copy the code of existing
(open source) systems/applications available on the
Internet (e.g., Linux).

» Cite any code that inspired your code

— As long as you cite what you used, it is not cheating

— In the worst case, we will deduct points if this undermines the
assignment



Additional details regarding collaborations
with other students & plagiarism (1/2)

You are encouraged to discuss ideas and problems related to the
programming assignments with the other students. You can also look
for additional resources on the Internet.

However, we consider plagiarism and cheating very seriously.
Hence, if any part of your final submission reflects influences from
external sources, you must cite these external sources in your report
and clearly indicate what you have taken from them. Also, any part of
your designs, your implementations, and your reports should
come only from you and not from other students.

We will run tests to detect similarities between source codes.
Additionally, we will allow ourselves to question you about your
submission if part of it looks suspicious, which means that you should
be able to explain each line (of text and code) that you have submitted.

"



Additional details regarding collaborations
with other students & plagiarism (2/2)

* Wrap up and general guidelines:

— Do not try to read/reuse solutions provided by other students (or past
students, or teachers from other/previous classes, even outside UGA).

— Precisely cite/identify all the material from external sources that you
have used to complete your assignment.

— Do not let other students access your own solutions. In particular:
» Make sure to protect your files on the University servers/printers.
« Do not publish your work on the Internet (GitHub, blog, ...)

— However, you are free (and encouraged) to help your classmates. For
example, it is OK to help them understand a bug in their programs or to
re-explain the goal of an exercise.

— If you are in doubt about any rule/detail, contact the teaching staff.
12



Rules regarding Al assistants

* Nowadays, Al assistants have become very
popular tools:
— Examples: ChatGPT, Github Copilot, etc.

« Our policy for this course:

— For lab sessions that are not graded: Al assistants
are allowed but not recommended

— For lab sessions that are graded: Al assistants are
forbidden (both for code and reports)

— If you have any specific question/request on this
matter, please contact us in advance.



