
Unix programming interface for file I/O 
operations and pipes

M1 MOSIG – Operating System Design

Renaud Lachaize



Acknowledgments

• Many ideas and slides in these lectures were inspired by 
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (many slides/figures directly adapted from those of the CS140 
class) 

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus 

Püschel (Carnegie Mellon University)
• Textbook: Computer Systems: A Programmer’s Perspective (2nd

Edition) a.k.a. “CSAPP”
• CS 15-213/18-243 classes (many slides/figures directly adapted 

from these classes)
– Textbooks (Silberschatz et al., Tanenbaum)

2



Outline

• Introduction

• Basic Unix I/O interface
– Main primitives
– Kernel management of open files

• Unix standard I/O interface

• Inter-process communication via pipes and FIFOs

• Dealing with short counts – an example : the RIO library

• Wrap-up on Unix I/O interfaces

3



Unix files

• A Unix file is a sequence of m bytes:
– B0, B1, .... , Bk , .... , Bm-1

• All I/O devices are represented as files:
– /dev/sda2 (/usr disk partition)
– /dev/tty2 (terminal)

• Even the kernel sometimes represented as a file:
– /dev/kmem (kernel memory image) 
– /proc (kernel data structures)

4



Unix file types

• Regular file
– File containing user/app data (binary, text, whatever)
– OS does not know anything about the format

• Other than “sequence of bytes”, akin to main memory

• Directory file
– A file that contains the names and locations of other files

• Character special and block special files
– Terminals (character special) and disks (block special)

• FIFO (named pipe)
– A file type used for inter-process communication (details later)

• Socket
– A file type used for network communication between processes 5



Unix I/O

• Key Features
– Elegant mapping of files to devices allows kernel to export 

simple interface called Unix I/O
– Important idea: All input and output is handled in a consistent 

and uniform way
• Basic Unix I/O operations (system calls):  

– Opening and closing files
• open()and close()

– Reading and writing a file
• read() and  write()

– Changing the current file position (seek)
• indicates next offset into file to read or write
• lseek()

6

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current file position = k



Opening files

7

• Opening a file informs the kernel that you are getting ready to access 
that file

• Returns a small identifying integer file descriptor
– fd == -1 indicates that an error occurred

• Each process created by a Unix shell begins life with three open files 
associated with a terminal:
– 0: standard input
– 1: standard output
– 2: standard error

int fd;   /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}



Closing files

8

• Closing a file informs the kernel that you are finished 
accessing that file

• Closing an already closed file is a recipe for disaster in 
threaded programs (more details on this later)

• Moral: Always check return codes, even for seemingly 
benign functions such as close()

int fd;     /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror("close");
exit(1);

}



Reading files

9

• Reading a file copies bytes from the current file position 
to memory, and then updates file position

• Returns number of bytes read from file fd into buf
– Return type ssize_t is signed integer (unlike size_t)
– nbytes < 0 indicates that an error occurred
– Short counts (nbytes < sizeof(buf) ) are possible and are 

not errors!

char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open file fd ...  */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}



Writing files

10

• Writing a file copies bytes from memory to the current file 
position, and then updates current file position

• Returns number of bytes written from buf to file fd
– nbytes < 0 indicates that an error occurred
– As with reads, short counts are possible and are not errors!

char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror("write");
exit(1);

}



Simple Unix I/O example

11

• Copying standard input to standard output, one byte at a 
time

int main(void) 
{

char c;
int len;

while ((len = read(0 /*stdin*/, &c, 1)) == 1) { 
if (write(1 /*stdout*/, &c, 1) != 1) {

exit(20);
}

}
if (len < 0) {

printf (“read from stdin failed”);
exit (10);

}
exit(0);

}



File metadata

12

• Metadata is data about data, in this case file data
• Per-file metadata maintained by kernel

§ accessed by users with the stat and fstat functions
/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t         st_dev;      /* device */
ino_t         st_ino;      /* inode */
mode_t        st_mode;     /* protection and file type */
nlink_t       st_nlink;    /* number of hard links */
uid_t         st_uid;      /* user ID of owner */
gid_t         st_gid;      /* group ID of owner */
dev_t         st_rdev;     /* device type (if inode device) */
off_t         st_size;     /* total size, in bytes */
unsigned long st_blksize;  /* blocksize for filesystem I/O */
unsigned long st_blocks;   /* number of blocks allocated */
time_t        st_atime;    /* time of last access */
time_t        st_mtime;    /* time of last modification */
time_t        st_ctime;    /* time of last change */

};



Example of accessing file metadata

13

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

int main (int argc, char **argv) 
{

struct stat stat;
char *type, *readok;

Stat(argv[1], &stat);
if (S_ISREG(stat.st_mode))

type = "regular";
else if (S_ISDIR(stat.st_mode))

type = "directory";
else 

type = "other";
if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";
else

readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

}

unix> ./statcheck statcheck.c
type: regular, read: yes
unix> chmod 000 statcheck.c
unix> ./statcheck statcheck.c
type: regular, read: no
unix> ./statcheck ..
type: directory, read: yes
unix> ./statcheck /dev/kmem
type: other, read: yes



Repeated slide: opening files

1414

• Opening a file informs the kernel that you are getting ready to access 
that file

• Returns a small identifying integer file descriptor
– fd == -1 indicates that an error occurred

• Each process created by a Unix shell begins life with three open files 
associated with a terminal:
– 0: standard input
– 1: standard output
– 2: standard error

int fd;   /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}



How a Unix kernel represents open files

15

• Two descriptors referencing two distinct open disk files. 
• Descriptor 1 (stdout) points to terminal, and descriptor 4 points to 

open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in 
stat
struct



File sharing

16

• Two distinct descriptors sharing the same disk file through two 
distinct open file table entries
– E.g., Calling open twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File A (terminal)

File B (disk)



How processes share files
What happens upon fork

17

• A child process inherits its parent’s open files
– Note: situation unchanged by exec functions

• Before fork call:

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)



How processes share files
What happens upon fork

18

• A child process inherits its parent’s open files
• After fork:

§ Child’s table same as parents, and +1 to each refcnt (reference 
counter)

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=2

...

File pos
refcnt=2

...

File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)
fd 0
fd 1
fd 2
fd 3
fd 4

Parent

Child



I/O redirection

19

• Question: How does a shell implement I/O redirection?
ls > foo.txt

• Answer: By calling the dup2(oldfd, newfd) function
– Copies (per-process) descriptor table entry oldfd to entry newfd

a

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
after dup2(4,1)



I/O redirection example

20

• Step #1: open file to which stdout should be redirected
§ Happens in child executing shell code, before calling exec

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B



I/O redirection example (continued)

21

• Step #2: call dup2(4,1)
§ causes fd=1 (stdout) to refer to disk file pointed at by fd=4
§ (then fd=4 can be closed)

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table 
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=0

...

File pos
refcnt=2

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A

File B



Outline

• Introduction

• Basic Unix I/O interface
– Main primitives
– Kernel management of open files

• Unix standard I/O interface

• Inter-process communication via pipes and FIFOs

• Dealing with short counts – an example : the RIO library

• Wrap-up on Unix I/O interfaces

22



Standard I/O functions

23

• The C standard library (libc) contains a 
collection of higher-level standard I/O functions

• Examples:
– Opening and closing files (fopen and fclose)
– Reading and writing bytes (fread and fwrite)
– Reading and writing text lines (fgets and fputs)
– Formatted reading and writing (fscanf and 
fprintf)



Standard I/O streams

24

• Standard I/O models open files as streams
– Abstraction for a file descriptor and a buffer in user memory.

• C programs begin life with three open streams 
(defined in stdio.h)
– stdin (standard input)
– stdout (standard output)
– stderr (standard error)
#include <stdio.h>
extern FILE *stdin;  /* standard input  (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error  (descriptor 2) */

int main() {
fprintf(stdout, "Hello, world\n");

}



Standard I/O streams (continued)

• Bridging streams and file descriptors

– FILE* fdopen(int fd, const char *mode);
Creates a stream from an existing file descriptor 

– int fileno(FILE *stream);
Returns the underlying file descriptor number of a given stream

– Standard streams
• Stream stdin associated with descriptor STDIN_FILENO (0)
• Stream stdout associated with descriptor STDOUT_FILENO (1)
• Stream stderr associated with descriptor STDERR_FILENO (2)

25



Buffering in standard I/O

26

• Standard I/O functions use buffered I/O

• Buffer flushed to output fd on “\n” or fflush call

printf("h");

h e l l o \n . .

printf("e");
printf("l");

printf("l");
printf("o");

printf("\n");

fflush(stdout);

buf

write(1, buf, 6);



Standard I/O buffering in action

27

• You can see this buffering in action for yourself, using 
the Unix strace program:

• Note: the general principle of I/O buffering is further explained in 
another part of the lecture (see the section about the RIO library)

linux> strace ./hello
execve("./hello", ["hello"], [/* ... */]).
...
write(1, "hello\n", 6...)               = 6
...
_exit(0)                                = ?

#include <stdio.h>

int main()
{

printf("h");
printf("e");
printf("l");
printf("l");
printf("o");
printf("\n");
fflush(stdout);
exit(0);

}



Outline

• Introduction

• Basic Unix I/O interface
– Main primitives
– Kernel management of open files

• Unix standard I/O interface

• Inter-process communication via pipes and FIFOs

• Dealing with short counts – an example : the RIO library

• Wrap-up on Unix I/O interfaces

28



Unix pipes

• Pipes are a mechanism for inter-process communication (IPC)

• A pipe is essentially a (unidirectional) buffer that can be used for 
data exchange between a producer process and a consumer 
process

• Available at two levels: command line interface and programmatic 
interface

• Command line interface (shell)
– Example : cat *.c | grep var

• Creates two processes: P1 running cat *.c and P2 running grep var
• Connects (redirects) P1’s standard output to the pipe’s input and the pipe’s 

output to P2’s standard input

29
cat *.c grep varpipe



Unix pipes
Programmatic interface
• User programs (not just shells) can create and interact 

with pipes through system calls

• A pipe is seen as a special kind of file

• The only way to share a pipe between processes is 
through inheritance of open files

• Typical usages:
– Parent creates pipe then creates child then communicates with 

child through pipe (see following example)
– Parent creates pipe, then create child1 and child2, then child1 

and child2 communicate through pipe
30



Unix pipes
Programmatic interface (continued)

31

Pipe creation: int pipe(int filedes[2])

If the call succeeds, a pipe is created and the fd array is updated with the file 
descriptors of  the pipe’s output (in fd[0]) and the pipe’s input (in fd[1])
If the call fails, -1 is returned.

The pipe can then be transmitted through inheritance and used for 
communication. Each process will typically use only one side of the pipe and 
should close the other side.

int fd[2]; pipe(fd);

fd[1]

pipe

fd[0]

after pipe(fd) after fork()
(copied descriptors)

parent child

after closing unused
descriptors

fd[1]

pipe

fd[0]
fd[1]
fd[0]

parent child

fd[1]

pipe

fd[0]
fd[1]
fd[0]



Unix pipe example

32

#include ...
#define BUFSIZE 10
int main(void) {
char bufin[BUFSIZE] = "empty";
char bufout[BUFSIZE] = "hello";
int bytesin, bytesout;   pid_t childpid;
int fd[2];

pipe(fd);
bytesin = strlen(bufin);
childpid = Fork();
if (childpid  != 0) {           /* parent */
close(fd[0]);
bytesout = write(fd[1], bufout, strlen(bufout)+1);
printf("[%d]: wrote %d bytes\n", getpid(), bytesout);

} else {                       /* child */
close(fd[1]);
bytesin = read(fd[0], bufin, BUFSIZE);
printf("[%d]: read %d bytes, my bufin is {%s} \n »,

getpid(), bytesin, bufin);
}  
exit(0);

}

<unix>./parentwritepipe
[29196]:wrote 6 bytes
[29197]: read 6 bytes, my bufin is {hello}
<unix>



Unix pipes
Additional details
• Pipes are unidirectional (i.e., one-way communication), with first-in-

first-out semantics
– If two-way communication is needed, use a pair of pipes

• Pipes are not persistent

• Automatic producer-consumer synchronization
– A reader will block if the pipe is empty but has at least one writer (i.e., 

the pipe input is still open)
– If the pipe is empty and has no remaining writer, read will return 0 
– A writer will block if pipe is full but has at least one reader (i.e., the pipe 

output is still open)
– A write to a pipe with a closed output will trigger an error
– So, for correct operation, it is important for each process to close the 

unused side(s) of a given pipe

33



Unix pipes
Additional details (continued)

• A call to write on a pipe with less than PIPE_BUF bytes 
(4096 bytes on Linux) is an atomic operation

• A call to write on a pipe with more than PIPE_BUF bytes 
is not necessarily atomic (i.e., the written data may get 
interleaved with the data of other writes)

• lseek does not work on pipes 

• See man 7 pipe for details

34



Named pipes (a.k.a. FIFOs)

• As we have seen, “basic” pipes can only be used between processes of the 
same family

• Named pipes (called “FIFOs”) remove this restriction

• A FIFO is created via the mkfifo system call and appears in the file system 
hierarchy
– (and has corresponding access rights, like a regular file)

• A reader process must open the FIFO in read-only mode (O_RDONLY)
• A writer process must open the FIFO in write-only mode (O_WRONLY)
• Rendez-vous between producer and consumer: the first process that 

calls open is blocked; gets unblocked when the second process calls open

• A FIFO is persistent is the file system but the corresponding data buffer is 
not

• See man 7 pipe and man 7 fifo for details

35



Outline

• Introduction

• Basic Unix I/O interface
– Main primitives
– Kernel management of open files

• Unix standard I/O interface

• Inter-process communication via pipes and FIFOs

• Dealing with short counts – an example : the RIO library

• Wrap-up on Unix I/O interfaces

36



Repeated slide: Reading files

37

• Reading a file copies bytes from the current file position 
to memory, and then updates file position

• Returns number of bytes read from file fd into buf
– Return type ssize_t is signed integer (unlike size_t)
– nbytes < 0 indicates that an error occurred
– Short counts (nbytes < sizeof(buf) ) are possible and are 

not errors!

char buf[512];
int fd;       /* file descriptor */
int nbytes;   /* number of bytes read */

/* Open file fd ...  */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}



Dealing with short counts

38

• Short counts can occur in these situations:
– Encountering end-of-file (EOF) on reads
– Reading text lines from a terminal
– Reading and writing network sockets or Unix pipes

• Short counts never occur in these situations:
– Reading from disk files (except for EOF)
– Writing to disk files

• One way to deal with short counts in your code:
– Use the RIO (Robust I/O) package from the “CSAPP” textbook (see 

http://csapp.cs.cmu.edu)
– The RIO functions are part of the csapp.h and csapp.c files 

available from: http://csapp.cs.cmu.edu/public/code.html
– The RIO functions are explained in the following chapter: 

http://csapp.cs.cmu.edu/public/ch10-preview.pdf

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/public/code.html
http://csapp.cs.cmu.edu/public/ch10-preview.pdf


The RIO package

39

• RIO is a set of wrappers that provide efficient and robust I/O in apps, 
such as network programs that are subject to short counts

• RIO provides two different kinds of functions
– Unbuffered input and output of binary data

• rio_readn and rio_writen
– Buffered input of binary data and text lines

• rio_readlineb and rio_readnb
• Buffered RIO routines are thread-safe and can be interleaved arbitrarily on 

the same descriptor

• Note: this is not a standard C/Unix package
– You should manually download the csapp.h and csapp.c files (see previous 

slide for details)



Unbuffered RIO

40

• Same interface as Unix read and write
• Especially useful for transferring data on pipes/network 

sockets

– rio_readn returns short count only if it encounters EOF
• Only use it when you know how many bytes to read

– rio_writen never returns a short count
– Calls to rio_readn and rio_writen can be interleaved arbitrarily 

on the same descriptor

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error



Implementation of rio_readn

41

/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n) 
{

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig handler return */
nread = 0;       /* and call read() again */

else
return -1;       /* errno set by read() */ 

} 
else if (nread == 0)

break;              /* EOF */
nleft -= nread;
bufp += nread;

}
return (n - nleft);         /* return >= 0 */

}



Buffered I/O: motivation

42

• I/O applications read/write one or a few characters at a 
time
– getc, putc, ungetc
– gets

• Read line of text, stopping at newline or string delimiter
• fscanf

• Implementing as calls to Unix I/O expensive
– Read & Write involve Unix kernel calls

• > 10,000 clock cycles

• Buffered read
– Use Unix read() to grab block of bytes
– User input functions take one (or a few) byte(s) at a time from 

buffer
• Refill buffer when empty

unreadalready readBuffer



Buffered I/O: implementation

43

unread

• For reading from file
• File has associated buffer to hold bytes that have been 

read from file but not yet read by user code

• Layered on Unix File

already readBuffer

rio_buf
rio_bufptr

rio_cnt

unreadalready readnot in buffer unseen

Current File Position

Buffered Portion



Buffered I/O: declaration

44

• All information contained in struct

typedef struct {
int rio_fd;                /* descriptor for this internal buf */
int rio_cnt;               /* unread bytes in internal buf */
char *rio_bufptr;          /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */

} rio_t;

unreadalready readBuffer

rio_buf
rio_bufptr

rio_cnt



Buffered RIO input functions

45

• Efficiently read text lines and binary data from a file 
partially cached in an internal memory buffer

– rio_readlineb reads a text line of up to maxlen bytes from 
file fd and stores the line in usrbuf

• Especially useful for reading text lines from pipes/network sockets

– Stopping conditions
• maxlen bytes read
• EOF encountered
• Newline (‘\n’) encountered

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error



Buffered RIO input functions (continued)

46

– rio_readnb reads up to n bytes from file fd
– Stopping conditions

• maxlen bytes read
• EOF encountered

– Calls to rio_readlineb and rio_readnb can be 
interleaved arbitrarily on the same descriptor

• Warning: Do not interleave with calls to rio_readn

#include "csapp.h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error



RIO example

47

• Copying the lines of a text file from standard input to 
standard output

#include "csapp.h"

int main(int argc, char **argv) 
{

int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) 

Rio_writen(STDOUT_FILENO, buf, n);
exit(0);

}



Outline

• Introduction

• Basic Unix I/O interface
– Main primitives
– Kernel management of open files

• Unix standard I/O interface

• Inter-process communication via pipes and FIFOs

• Dealing with short counts – an example : the RIO library

• Wrap-up on Unix I/O interfaces

48



Unix I/O vs. standard I/O vs. RIO

49

• Standard I/O and RIO are implemented using low-level 
Unix I/O

• Which ones should you use in your programs?

Unix I/O functions 
(accessed via system calls)

Standard I/O 
functions

C application program

fopen  fdopen
fread  fwrite 
fscanf fprintf  
sscanf sprintf 
fgets  fputs 
fflush fseek
fclose

open   read
write  lseek
stat   close

rio_readn
rio_writen
rio_readinitb
rio_readlineb
rio_readnb

RIO
functions



Choosing I/O functions

51

• General rule: use the highest-level I/O functions you 
can
– Many C programmers are able to do all of their work using the 

standard I/O functions

• When to use standard I/O (fopen, fread, fwrite ...)
– When working with disk or terminal files

• When to use raw Unix I/O (open, read, write ...)
– When you need to fetch file metadata
– In rare cases when you need absolute highest performance

• When to use RIO
– When you are reading and writing network sockets or pipes
– Never use standard I/O on sockets or pipes



Pros and cons of raw Unix I/O

52

• Pros
– Unix I/O is the most general and lowest overhead form of I/O.

• All other I/O packages are implemented using Unix I/O functions.
– Unix I/O provides functions for accessing file metadata.

• Cons
– Dealing with short counts is tricky and error prone.
– Efficient reading of text lines requires some form of buffering, 

also tricky and error prone.
– Both of these issues are addressed by the standard I/O and 

RIO packages.



Pros and cons of standard I/O

53

• Pros:
– Buffering increases efficiency by decreasing the number of 
read and write system calls

– Short counts are handled automatically

• Cons:
– Provides no function for accessing file metadata
– Standard I/O is not appropriate for input and output on pipes 

and network sockets
– There are poorly documented restrictions on streams that 

interact badly with restrictions on pipes/sockets



Working with binary files

54

• Binary File Examples
– Object code (produced by compilers)
– Images (JPEG, GIF, …)
– Arbitrary byte values

• Functions you should NOT use with binary files
– Line-oriented I/O

• fgets, scanf, printf, rio_readlineb
• Interpret byte value 0x0A (‘\n’) as special
• Use rio_readn or rio_readnb instead

– String functions
• strlen, strcpy

• Interpret byte value 0 as special



For further information

55

• A very good reference:
– W. Richard  Stevens & Stephen A. Rago, Advanced 

Programming in the Unix Environment, 2nd Edition, 
Addison Wesley, 2005 (or 3rd edition, 2013)

• Updated from Stevens’1993 book

• Stevens was a very good technical writer
– Produced authoritative books on:

• Unix programming
• TCP/IP (the protocol that makes the Internet work)
• Unix network programming
• Unix IPC programming

– Died in 1999
• But others have taken up his legacy



For further information (continued)

• See also:
– M. Kerrisk. The Linux Programming Interface (a Linux 

and UNIX system Programming Handbook). No 
Starch Press, 2010.

56


