Unix programming interface for file 1/0
operations and pipes

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
— Arnaud Legrand, Noél De Palma, Sacha Krakowiak

— David Mazieres (Stanford)

« (many slides/figures directly adapted from those of the CS140
class)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus
Puschel (Carnegie Mellon University)

« Textbook: Computer Systems: A Programmer’s Perspective (2™
Edition) a.k.a. “CSAPP”

* CS 15-213/18-243 classes (many slides/figures directly adapted
from these classes)

— Textbooks (Silberschatz et al., Tanenbaum)

Outline

* [ntroduction
 Basic Unix I/O interface

— Main primitives
— Kernel management of open files

« Unix standard I/O interface
* Inter-process communication via pipes and FIFOs
« Dealing with short counts — an example : the RIO library

« Wrap-up on Unix I/O interfaces

Unix files

* A Unix file is a sequence of m bytes:
- BO; B77 R Bk: ey Bm-1

« All I/O devices are represented as files:
—~ /dev/sda2 (/usr disk partition)
- /dev/tty2 (terminal)

* Even the kernel sometimes represented as a file:
- /dev/kmem (kernel memory image)
- /proc (kernel data structures)

Unix file types

Regular file
— File containing user/app data (binary, text, whatever)

— OS does not know anything about the format
« Other than “sequence of bytes”, akin to main memory

« Directory file
— A file that contains the names and locations of other files

« Character special and block special files
— Terminals (character special) and disks (block special)

 FIFO (named pipe)
— Afile type used for inter-process communication (details later)

« Socket
— Afile type used for network communication between processes

Unix I/O

 Key Features

— Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O

— Important idea: All input and output is handled in a consistent
and uniform way

« Basic Unix I/O operations (system calls):
— Opening and closing files
« open()and close ()
— Reading and writing a file
« read() and write()

— Changing the current file position (seek)

* indicates next offset into file to read or write
e lseek()

Bo [By |®°° Bi.1| Bk [Bksr| ®® ®

t

Current file position = k

Opening files

* Opening a file informs the kernel that you are getting ready to access
that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(1l);

}

« Returns a small identifying integer file descriptor
— f£d == -1 indicates that an error occurred

« [Each process created by a Unix shell begins life with three open files
associated with a terminal:

— 0: standard input
— 1: standard output
— 2: standard error

Closing files

* Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(1l);

}

* Closing an already closed file is a recipe for disaster in
threaded programs (more details on this later)

« Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading files

* Reading a file copies bytes from the current file position
to memory, and then updates file position

char buf[512];

int £4d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit (1) ;

* Returns number of bytes read from file £d into buf
— Return type ssize tis signed integer (unlike size t)
- nbytes < 0 indicates that an error occurred

— Short counts (nbytes < sizeof (buf)) are possible and are
not errors!

Writing files

« Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd4d ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit (1),

« Returns number of bytes written from buf to file £d
- nbytes < 0 indicates that an error occurred
— As with reads, short counts are possible and are not errors!

10

Simple Unix I/O example

« Copying standard input to standard output, one byte at a
time

int main(void)

{

char c;
int len;
while ((len = read(0 /*stdin*/, &c, 1)) == 1) {
if (write(l /*stdout*/, &c, 1) '= 1) {
exit (20) ;

}

}

if (len < 0) {
printf (“read from stdin failed”);
exit (10);

}

exit (0) ;

File metadata

« Metadata is data about data, in this case file data

« Per-file metadata maintained by kernel
= accessed by users with the stat and £stat functions

struct stat {
dev_t
ino_t
mode t
nlink t
uid t
gid t
dev_t
off t
unsigned long
unsigned long
time t
time t
time t

st _dev;

st _ino;

st _mode;
st nlink;
st uid;

st _gid;
st_rdev;
st _size;
st blksize;
st blocks;
st atime;
st mtime;
st ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/* Metadata returned by the stat and fstat functions */

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/O */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

12

Example of accessing file metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.c

int main (int argc, char **argv) type: regular, read: yes

{ unix> chmod 000 statcheck.c
struct stat stat; unix> ./statcheck statcheck.c
char *type, *readok; type: regular, read: no

unix> ./statcheck
Stat (argv[l], &stat); type: directory, read: yes
if (S_ISREG(stat.st mode)) unix> ./statcheck /dev/kmem
type = "regular"; type: other, read: yes

else if (S_ISDIR(stat.st mode))
type = "directory";
else
type = "other";
if ((stat.st mode & S IRUSR)) /* OK to read?*/

readok = "yes";
else
readok = "no";

printf ("type: %s, read: %$s\n", type, readok);
exit (0) ;

Repeated slide: opening files

Opening a file informs the kernel that you are getting ready to access

that file

int £d; /* file descriptor */

if ((fd = open("/etc/hosts", O RDONLY)) < 0) {
perror ("open") ;
exit(1l);

}

Returns a small identifying integer file descriptor
— f£d == -1 indicates that an error occurred

Each process created by a Unix shell begins life with three open files

associated with a terminal:
— 0: standard input
— 1: standard output
— 2: standard error

14

How a Unix kernel represents open files

« Two descriptors referencing two distinct open disk files.

« Descriptor 1 (stdout) points to terminal, and descriptor 4 points to
open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

[

stdin fdo — File access
stdout fd1 - | File pos File size Info in
stderr {fd2
fd3 refcnt=1 File type stat
- struct
fd4 ~—_ : :
N File access
. File size
File pos
refcnt=1 File type

15

File sharing

« Two distinct descriptors sharing the same disk file through two
distinct open file table entries

— E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

stdin fdo — File access
stdout fd1 — . : :
File size

stderr fd2 File pos .

fd 3 refcent=1 File type

fd 4 ~_ : :

/
File pos

refcnt=1

16

How processes share files
What happens upon fork

« A child process inherits its parent’s open files
— Note: situation unchanged by exec functions

» Before fork call:
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

_File A (terminal)

[

stdin fdo — File access
stdout {fd1 — . : :
File size
stderr fd2 File pos :
fd 3 refcnt=1 File type
fd 4 ~ : :
—1_—— | File access
. File size
File pos
refcnt=1 File type

How processes share files
What happens upon fork

« A child process inherits its parent’s open files

» After fork:
» Child’s table same as parents, and +1 to each refcnt (reference
counter)
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent _File A (terminal) -
fd 0 / = File access
fd1l — . o -
File size
td 2 File pos :
fd 3 refcnt=2 File type
fda | —| : :
child File B (dlSk) »
N File access
o[/ —
fdd1l 7 File pos File size
fd 2 ISR File type
fd3] :
fda| —

/O redirection

* Question: How does a shell implement I/O redirection?
ls > foo.txt

* Answer: By calling the dup2 (o1dfd, newfd) function
— Copies (per-process) descriptor table entry o1d£fd to entry newfd

Descriptor table Descriptor table
before dup2 (4,1) after dup2 (4,1)
fdo fdo

fdi|a fdl|b

fd 2 fd 2

fd3 fd 3

fdda | b fdda | b

/O redirection example

* Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before calling exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
“File A .
stdin fdoO = File access
stdout fd1 = . . .
File size
stderr fd2 File pos :
fd 3 refent=1 File type
fda | —| : :
\File B n
N File access
- File size
File pos
refcnt=1 File type

20

/O redirection example (continued)

o Step #2: call dup2(4,1)
= causes fd=1 (stdout) to refer to disk file pointed at by fd=4
* (then fd=4 can be closed)

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A -
stdin fdoO — File access
stdout fd1 o . Fi :
ile size
stderr fd2 < File pos !
fd 3 refcnt=0 File type
fd 4 ~ : :
File B >
N File access
- File size
File pos
refcnt=2 File type

21

Outline

* [ntroduction
 Basic Unix I/O interface

— Main primitives
— Kernel management of open files

« Unix standard I/O interface
* Inter-process communication via pipes and FIFOs
« Dealing with short counts — an example : the RIO library

« Wrap-up on Unix I/O interfaces

22

Standard 1/0O functions

 The C standard library (1ibc) contains a
collection of higher-level standard I/0O functions

 Examples:
— Opening and closing files (fopen and £fclose)
— Reading and writing bytes (fread and fwrite)
— Reading and writing text lines (Egets and £puts)

— Formatted reading and writing (Escanf and
fprintf)

23

Standard |I/O streams

« Standard I/O models open files as streams
— Abstraction for a file descriptor and a buffer in user memory.
« C programs begin life with three open streams
(defined in stdio.h)
- stdin (standard input)
- stdout (standard output)
— stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");

}

24

Standard I/O streams (continued)

» Bridging streams and file descriptors

— FILE* fdopen(int fd, const char *mode);
Creates a stream from an existing file descriptor

— int fileno (FILE *stream);

Returns the underlying file descriptor number of a given stream

— Standard streams
« Stream stdin associated with descriptor STDIN FILENO (0)
« Stream stdout associated with descriptor STDOUT FILENO (1)
« Stream stderr associated with descriptor STDERR FILENO (2)

25

Buffering in standard |/O

« Standard I/O functions use buffered I/O

printf ("h") ;

printf ("e") ;

printf("1") ;
printf£("1") ;

printf ("o") ;

buf I printf ("\n") ;

|

hlelllllo]l\n

fflush (stdout) ;

write(l, buf, 6);

 Buffer flushed to output fd on “\n” or ££1ush call

Standard |/O buffering in action

* You can see this buffering in action for yourself, using
the Unix strace program:

#include <stdio.h> linux> strace ./hello

execve ("./hello", ["hello"], [/* ... */]).

int main () ...

{ write(l, "hello\n", 6...) = 6
printf ("h") ; c .
printf ("e") ; exit (0)
printf ("1") ; B
printf ("1") ;
printf ("o") ;
printf ("\n") ;
fflush (stdout) ;
exit (0) ;

il
D

* Note: the general principle of I/O buffering is further explained in
another part of the lecture (see the section about the RIO library) 27

Outline

* [ntroduction
 Basic Unix I/O interface

— Main primitives
— Kernel management of open files

« Unix standard I/O interface
* Inter-process communication via pipes and FIFOs
« Dealing with short counts — an example : the RIO library

« Wrap-up on Unix I/O interfaces

28

Unix pipes

« Pipes are a mechanism for inter-process communication (IPC)

« A pipe is essentially a (unidirectional) buffer that can be used for
data exchange between a producer process and a consumer

Process

« Available at two levels: command line interface and programmatic

interface

« Command line interface (shell)

— Example : cat *.c | grep var

» Creates two processes: P1 running cat *.c and P2 running grep var

» Connects (redirects) P1’s standard output to the pipe’s input and the pipe’s
output to P2’s standard input

cat *.c

—p

pipe

grep var

29

Unix pipes
Programmatic interface

« User programs (not just shells) can create and interact
with pipes through system calls

« A pipe is seen as a special kind of file

* The only way to share a pipe between processes is
through inheritance of open files

« Typical usages:
— Parent creates pipe then creates child then communicates with
child through pipe (see following example)

— Parent creates pipe, then create child1 and child2, then child1

and child2 communicate through pipe
30

Unix pipes

Programmatic interface (continued)

Pipe creation: int pipe (int filedes[2])
int £d[2]; pipe(£fd) ;

If the call succeeds, a pipe is created and the £d array is updated with the file

descriptors of the pipe’ s output (in £d[0]) and the pipe’ s input (in £4[1])
If the call fails, -1 is returned.

The pipe can then be transmitted through inheritance and used for

communication. Each process will typically use only one side of the pipe and
should close the other side.

fd[1]
fd[O]

pipe
after pipe (£d)

parent

fd[1]
fd[O]

child

parent

fd[1]
fd[O]

fd[1]
fd[O]

pipe

after fork ()

(copied descriptors)

child

fd[1]
fd[O]

pipe

after closing unused
descriptors

31

Unix pipe example

#include
#define BUFSIZE 10
int main(void) {

char bufin[BUFSIZE] = "empty";

char bufout[BUFSIZE] = "hello";

int bytesin, bytesout; pid_t childpid;
int £4d[2];

pipe (£d) ;

bytesin = strlen (bufin);
childpid = Fork() ;
if (childpid !'= 0) { /* parent */
close (£d4[0]) ;
bytesout = write(fd[1], bufout, strlen (bufout)+1l);
printf ("[%d]: wrote %d bytes\n", getpid(), bytesout);
} else { /* child */
close (£d[1]) ;
bytesin = read(fd[0], bufin, BUFSIZE)
printf ("[%d]: read %d bytes, my bufin is {%s} \n »,
getpid() , bytesin, bufin);
}
exit (0);

<unix>./parentwritepipe
[29196] :wrote 6 bytes
[29197]: read 6 bytes, my bufin is {hello}

<unix>

Unix pipes
Additional detalls

« Pipes are unidirectional (i.e., one-way communication), with first-in-
first-out semantics

— If two-way communication is needed, use a pair of pipes

* Pipes are not persistent

« Automatic producer-consumer synchronization

— A reader will block if the pipe is empty but has at least one writer (i.e.,
the pipe input is still open)

— If the pipe is empty and has no remaining writer, read will return 0

— A writer will block if pipe is full but has at least one reader (i.e., the pipe
output is still open)

— A write to a pipe with a closed output will trigger an error

— S0, for correct operation, it is important for each process to close the
unused side(s) of a given pipe

33

Unix pipes
Additional details (continued)

A call to write on a pipe with less than PIPE_BUF bytes
(4096 bytes on Linux) is an atomic operation

A call to write on a pipe with more than PIPE_BUF bytes

IS not necessarily atomic (i.e., the written data may get
interleaved with the data of other writes)

« lseek does not work on pipes

« Seeman 7 pipe for details

34

Named pipes (a.k.a. FIFOs)

« As we have seen, “basic” pipes can only be used between processes of the
same family

« Named pipes (called “FIFOs”) remove this restriction

« AFIFO is created via the mk£fifo system call and appears in the file system
hierarchy
— (and has corresponding access rights, like a regular file)

« Areader process must open the FIFO in read-only mode (O_RDONLY)
« A writer process must open the FIFO in write-only mode (O_WRONLY)

 Rendez-vous between producer and consumer: the first process that
calls open is blocked; gets unblocked when the second process calls open

« AFIFO is persistent is the file system but the corresponding data buffer is
not

 Seeman 7 pipe andman 7 fifo for details

35

Outline

* [ntroduction
 Basic Unix I/O interface

— Main primitives
— Kernel management of open files

« Unix standard I/O interface
* Inter-process communication via pipes and FIFOs
« Dealing with short counts — an example : the RIO library

« Wrap-up on Unix I/O interfaces

36

Repeated slide: Reading files

* Reading a file copies bytes from the current file position

to memory, and then updates file position

char buf[512];

perror ("read") ;
exit(1l);

int £4d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

* Returns number of bytes read from file £d into buf
— Return type ssize tis signed integer (unlike size t)

- nbytes < 0 indicates that an error occurred

— Short counts (nbytes < sizeof (buf)) are possible and are

not errors!

37

Dealing with short counts

Short counts can occur in these situations:
— Encountering end-of-file (EOF) on reads
— Reading text lines from a terminal
— Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
— Reading from disk files (except for EOF)
— Writing to disk files

One way to deal with short counts in your code:
— Use the RIO (Robust I/0) package from the “CSAPP” textbook (see
http://csapp.cs.cmu.edu)

— The RIO functions are part of the csapp.h and csapp. c files
available from: http://csapp.cs.cmu.edu/public/code.html

— The RIO functions are explained in the following chapter:
http://csapp.cs.cmu.edu/public/ch10-preview.pdf

38

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/public/code.html
http://csapp.cs.cmu.edu/public/ch10-preview.pdf

The RIO package

 RIO is a set of wrappers that provide efficient and robust I/O in apps,
such as network programs that are subject to short counts

« RIO provides two different kinds of functions
— Unbuffered input and output of binary data

* rio readnand rio writen
— Buffered input of binary data and text lines
* rio readlineb and rio readnb

« Buffered RIO routines are thread-safe and can be interleaved arbitrarily on
the same descriptor

* Note: this is not a standard C/Unix package

— You should manually download the csapp.h and csapp. c files (see previous
slide for details)

39

Unbuffered RIO

« Same interface as Unix read and write

« Especially useful for transferring data on pipes/network
sockets

#include "csapp.h"

ssize t rio readn(int fd, void *usrbuf, size t n);
ssize t rio writen(int fd, void *usrbuf, size t n);

Return: num. bytes transferred if OK, 0 on EOF (rio readn only), -1 on error

— rio_readn returns short count only if it encounters EOF
* Only use it when you know how many bytes to read
— rio_writen never returns a short count

— Callsto rio _readn and rio_writen can be interleaved arbitrarily
on the same descriptor

40

Implementation of rio readn
/*

* rio readn - robustly read n bytes (unbuffered)
*/

ssize t rio readn(int fd, void *usrbuf, size t n)

{

size t nleft = n;
ssize_ t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {

if (errno == EINTR) /* interrupted by sig handler return */
nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
}
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
}

return (n - nleft); /* return >= 0 */

Buffered I/O: motivation

« |/O applications read/write one or a few characters at a
time
— getc, putc, ungetc
— gets
« Read line of text, stopping at newline or string delimiter
e fscanf

* Implementing as calls to Unix I/O expensive

— Read & Write involve Unix kernel calls
« > 10,000 clock cycles

Buffer | already read unread

« Buffered read
— Use Unix read () to grab block of bytes

— User input functions take one (or a few) byte(s) at a time from
buffer

 Refill buffer when empty

Buffered |/O: implementation

For reading from file
File has associated buffer to hold bytes that have been

read from file but not yet read by user code

Buffer

< rio cnt —

already read

unread

rio buf -/ _ j
- rio bufptr

Layered on Unix File

< Buffered Portion

not in buffer

already read

unread

unseen

Current File Position

J

43

Buffered I/O: declaration

* All information contained in struct

< rio cnt —

Buffer | already read

unread

rio buf -/ _ j
- rio bufptr

typedef struct {
int rio fd; /*
int rio_ecnt; [*
char *rio bufptr; /*
char rio buf[RIO BUFSIZE]; /*
} rio_t;

descriptor for this internal buf */
unread bytes in internal buf */
next unread byte in internal buf */
internal buffer */

44

Buffered RIO input functions

 Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include "csapp.h"
void rio readinitb(rio t *rp, int £d);
ssize t rio readlineb(rio_t *rp, void *usrbuf, size t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

— rio readlineb reads a text line of up to maxlen bytes from

file £d and stores the line in usrbuf
» Especially useful for reading text lines from pipes/network sockets

— Stopping conditions
 maxlen bytes read
« EOF encountered

« Newline (“\n’) encountered
45

Buffered RIO input functions (continued)

#include "csapp.h"
void rio readinitb(rio t *rp, int f£d);

ssize t rio readlineb(rio_t *rp, void *usrbuf, size t maxlen);
ssize t rio readnb(rio t *rp, void *usrbuf, size t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

— rio_readnb reads up to n bytes from file £d

— Stopping conditions
 maxlen bytes read
« EOF encountered

— Callsto rio_readlineb and rio_readnb can be
interleaved arbitrarily on the same descriptor

« Warning: Do not interleave with calls to rio readn

46

RIO example

« Copying the lines of a text file from standard input to
standard output

#include "csapp.h"

int main(int argc, char **argv)
{
int n;
rio t rio;
char buf [MAXLINE] ;

Rio readinitb(&rio, STDIN FILENO) ;

while((n = Rio readlineb(&rio, buf, MAXLINE)) '= 0)
Rio writen (STDOUT FILENO, buf, n);

exit (0) ;

Outline

* [ntroduction
 Basic Unix I/O interface

— Main primitives
— Kernel management of open files

« Unix standard I/O interface
* Inter-process communication via pipes and FIFOs
« Dealing with short counts — an example : the RIO library

« Wrap-up on Unix I/O interfaces

48

Unix I/O vs. standard I/O vs. RIO

« Standard I/O and RIO are implemented using low-level
Unix 1/O

fopen
fread
fscanf
sscanf
fgets
fflush
fclose

fdopen
fwrite
fprintf
sprintf
fputs
fseek

»
\

open

stat

read

write lseek

close

<4+ ----

C application program

| Standard 1/O RIO

functions functions

Unix 1I/0 functions
(accessed via system calls)

rio readn
rio writen
rio readinitb
rio readlineb
rio_ readnb

* Which ones should you use in your programs?

49

Choosing I/O functions

General rule: use the highest-level I/O functions you
can

— Many C programmers are able to do all of their work using the
standard 1/O functions

When to use standard I/O (fopen, fread, fwrite ...)
— When working with disk or terminal files
When to use raw Unix I/O (open, read, write ...)

— When you need to fetch file metadata
— In rare cases when you need absolute highest performance

When to use RIO

— When you are reading and writing network sockets or pipes
— Never use standard 1/O on sockets or pipes

51

Pros and cons of raw Unix I/O

Pros
— Unix 1/O is the most general and lowest overhead form of |/O.

 All other I/O packages are implemented using Unix I/O functions.

— Unix I/O provides functions for accessing file metadata.

Cons
— Dealing with short counts is tricky and error prone.

— Efficient reading of text lines requires some form of buffering,
also tricky and error prone.

— Both of these issues are addressed by the standard I/O and
RIO packages.

52

Pros and cons of standard |/O

* Pros:
— Buffering increases efficiency by decreasing the number of
read and write system calls

— Short counts are handled automatically

 Cons:
— Provides no function for accessing file metadata
— Standard I/O is not appropriate for input and output on pipes
and network sockets

— There are poorly documented restrictions on streams that
interact badly with restrictions on pipes/sockets

53

Working with binary files

* Binary File Examples
— Object code (produced by compilers)
— Images (JPEG, GIF, ...)
— Arbitrary byte values

* Functions you should NOT use with binary files
— Line-oriented /O
« fgets, scanf, printf, rio readlineb
* Interpret byte value 0x0A (“\n’) as special
* Use rio readnor rio_ readnb instead
— String functions
e strlen, strcpy
* Interpret byte value 0 as special

54

For further information

A very good reference:

— W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2"° Edition,
Addison Wesley, 2005 (or 3 edition, 2013)

« Updated from Stevens'1993 book

Stevens was a very good technical writer

— Produced authoritative books on:
* Unix programming
« TCP/IP (the protocol that makes the Internet work)
« Unix network programming
* Unix IPC programming
— Died in 1999
» But others have taken up his legacy

55

For further information (continued)

« See also:

— M. Kerrisk. The Linux Programming Interface (a Linux
and UNIX system Programming Handbook). No
Starch Press, 2010.

56

