
Introduction to Operating Systems

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were
inspired by or even borrowed from the work of
others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• Many slides directly adapted from those of the CS140
class

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Textbooks (Silberschatz et al., Tanenbaum)

2

Course goals

• Introduce you to operating system concepts
– Hard to use a computer without interacting with the OS
– Understanding the OS makes you a better (more effective) programmer

• Cover important system concepts in general
– Caching, concurrency, memory management, I/O, protection, ...

• Teach you to deal with larger software systems

• Prepare you to take other classes related to OS concepts
– M1 Principles of computer networks, M1/M2 Distributed systems, M1

Parallel systems, M2 Cloud infrastructure, M2 Virtualization & advanced
OS, …

3

Outline

• What is an operating system?

• Some history

• Abstractions: processes and address spaces

• Protection and resource management

4

What is an operating system?

• An operating system (OS) is a (software) layer between
the hardware and the applications

• Two key roles: virtualization and resource
management

6

What is an operating system?

• Virtualization
– The OS makes it easier to write and run programs on a machine

• Hides the low-level interface of the hardware and replaces it with
higher-level abstractions

• Hides the physical limitations of a machine and the differences
between machines (size of the main memory, number of
processors)

• Hides the sharing of resources between applications/users
– Thus, we sometimes refer to the OS as a “virtual machine”

7

What is an operating system? (continued)

• Resource management
– The OS is in charge of managing the resources of a

computer system
• Physical resources: memory, processor, devices, ...
• Logical resources: programs, data, communications, ...

– Goals: allow the applications to run safely / securely /
efficiently / fairly ... despite the fact that they run
concurrently

– Encompasses several dimensions, including:
allocation, sharing and protection

– Consists in a combination of mechanisms and
policies 8

OS Design goals and trade-offs

• Provide useful abstractions to improve programmer/administrator/user
productivity

• Provide high performance
– Leverage the power/capacity of the hardware
– Minimize the (time and space) overhead of the OS features

• Provide protection
– Between applications
– Between applications and OS
– Between users

• Provide a high degree of reliability

• Take care of other aspects such as predictability, energy-efficiency, ...

10

OS Interfaces

• An operating system typically exports two kinds
of interfaces
– A command/user interface
– A programmatic interface

• Command/user interface
– Designed for human users
– Various forms: textual or graphical
– Composed of a set of commands

• Textual example (Unix shell): rm myfile.txt
• Graphical example (most systems): drag the myfile.txt icon

into the trash bin.
11

OS Interfaces (continued)

• Programmatic interface
– This interface is used/called from application

programs running on the system
• Including the programs implementing command/user

interfaces
– Composed of a set of procedures/functions

• Libraries
• System calls (more details later)

– Defined both:
• At the source code level: Application Programming

Interface (API)
• At the machine code level: Application Binary Interface

(ABI) 12

Some of the topics that we will study
during the semester
• How does the OS virtualize and manage resources?

– What are the required mechanisms and policies?
– What kind of support is required from the hardware?
– How can these goals be achieved efficiently?
– We will consider several resources : CPU, main memory,

input/output (I/O) devices (e.g., storage devices)

• How to build concurrent programs?
– How to program applications with several “tasks”?
– How to coordinate these tasks and let them share data?
– How to make such programs correct and efficient?
– What kind of support is needed from the OS and the hardware to

achieve this goals?

13

Outline

• What is an operating system?

• Some history

• Abstractions : processes and address spaces

• Protection and resource management

14

Some History
(1) Early operating systems
• In the beginning, the OS did not do much
• Essentially, a set of libraries of commonly-used functions

(e.g., low-level code for I/O devices)

• Running one program at a time
• Possibly involving a human operator (e.g., for deciding in

what order to run the jobs)
• Assumed no bad users or programs
• Problem: poor utilization

– ... of hardware (e.g., CPU idle while waiting for I/O completion)
– ... of human user (must wait for each program to finish)

15

Some History
(2) Beyond libraries: Protection
• Realization that the code of the OS plays a central role
• A user/application should not be able to make the

whole system fail or to perform unauthorized
operations
– E.g., issue arbitrary write requests to a storage device

• Idea: Modification of the OS interface
– Old interface: provide applications with library procedures

allowing direct access to critical operations
– New interface: force application to delegate critical

operations, using a hardware mechanism that transfers
control to a more privileged execution mode

• Such an interface is called a “system call” or “syscall” (more
details later)

16

Some History
(3) Multiprogramming / Multitasking
• Idea: improve machine resource utilization by

running several programs concurrently
– When a program blocks (e.g., waiting for input from the disk / the

network / the user), run another program

• Problems: what can an ill-behaved application do ?
– Never relinquish the CPU (infinite loop)
– Access the memory of another application

• The OS provides mechanisms to address these
problems
– Preemption: take CPU away from a looping application
– Memory protection: prevent an application from accessing

another application’s memory
17

Typical structure of an operating system

20

Hardware:
CPU(s), memory, I/O devices

OS kernel:
Process management, memory management,

management of I/O devices, …

Libraries:
Formatted I/O operations, memory heap management,

processing of character strings, mathematical functions, …

Utilities:
Shells, graphical user interfaces, misc.
commands (e.g., for handling files) …

Applications

Users

us
er

 m
od

e
ke

rn
el

 m
od

e

Hardware-specific code (device drivers, …)

Monolithic kernel design (e.g., Linux)

24

Hardware

Dispatcher for system calls & traps/exceptions

Dispatcher for interrupts

High level OS interface

Platform-specific code

CPU
management

Memory
management

InterProcess
communication

(IPC)

I/O management Networking

Storage &
file systems

Terminals
…

Device
driverDevice

driverDevice
driver

Device
driverDevice

driver

Device
driverDevice

driver

Device
driver

App App App …

us
er

 m
od

e
ke

rn
el

 m
od

e

LibrariesLibraries Libraries Libraries

Microkernel design (e.g., L4)

25

Hardware

Dispatcher for system calls & traps/exceptions

Dispatcher for interruptsPlatform-specific code

App App …

Basic CPU
management

Basic memory
management Basic IPC

Device
driver

Device
driver

High level
OS interface

File
system us

er
 m

od
e

ke
rn

el
 m

od
e

Libraries Libraries

Outline

• What is an operating system?

• Some history

• Abstractions: processes and address spaces

• Protection and resource management

26

A key OS abstraction: the Process

• A process is an abstraction corresponding to
a running instance of a program

• Its main role consists in virtualizing the CPU

– Although there are just a few physical CPUs (or even
just one), the OS can provide the illusion of a nearly-
endless supply of logical CPUs (one per process)

– Its also allows the OS to capture the state and control
the execution of a running program, which are key
mechanisms for resource management

27

A key OS abstraction: the Process

• A process mainly consists in:
– An execution context (a.k.a. an execution flow, or a

control flow):
• A current machine state: a set of current values for the CPU

registers, including the program counter (PC) and the stack
pointer (SP)

• An execution stack

– A memory space (a.k.a. an address space)

– A logical state (is it currently running? If not, why?)
– Some other information, required by the OS

28

Process address space
A simplified view

29
Picture from: Silberschatz et al., Operating systems concepts (8th edition)

Process address space
A more detailed view

30

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused

stack pointer

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

0x0

Pi
ct

ur
e

fro
m

: B
ry

an
t &

 O
’H

al
la

ro
n,

 C
om

pu
te

r s
ys

te
m

s:
 a

 p
ro

gr
am

m
er

’s
 p

er
sp

ec
tiv

e

Example based on
Linux for Intel x86
(32 bits)

Outline

• What is an operating system?

• Some history

• Abstractions : processes and address spaces

• Protection and resource management

32

Some key techniques for protection

• Overall goal: prevent bad processes from impacting
the OS or other processes

• Preemption
– Give a resource to a process and take it away if needed for

something else
– Example: CPU preemption

• Interposition
– Place OS between application and resources (e.g., an I/O

device, or a piece of information stored in memory)
– OS tracks the resources that the application is allowed to use
– On every access request, check that the access is legal
– Example: System calls 33

Some key techniques for protection
(continued)
• CPU execution modes

– CPUs provide 2 execution modes:
• Privileged (a.k.a. supervisor mode, or kernel-level mode)
• Unprivileged (a.k.a. user mode, or user-level mode)

– OS kernel code runs in privileged mode
– Application code runs in unprivileged mode

– Protection-related code (resp. data) must only be
executed (resp. accessed) in privileged mode

• Enforced by hardware (details later)
• A system call is the only way to switch from unprivileged

mode to privileged mode
34

System calls

• Applications (i.e., user-level code) can invoke
kernel services through the system call
mechanism

– Using a special hardware instruction that triggers a
trap into kernel-mode

– ... and transfers control to a trap handler

– ... which dispatches to one of a few hundred syscall
handlers

35

System calls (continued)

• Illustration with the open system call (to open a file)

36
Picture from: Silberschatz et al., Operating systems concepts (8th edition)

System calls (continued)

• Goal: perform things that an application is not
allowed to do in unprivileged mode
– Like a library call, but into more privileged code

• The kernel supplies a well-defined system-call
interface
– Applications set up syscall arguments and trap to kernel
– Kernel checks if operation is allowed, performs operation and

returns results (transfers control back to application)
– Many higher-level library functions are built on the syscall

interface
• Example (Unix) : functions such as printf and scanf are

implemented as user-level library code that calls the kernel using
system calls such as read and write

37

System call example

• The standard C library (libc) is
implemented in terms of
syscalls

– printf (in libc) has same
privilege as application

– printf calls write, which
can access low-level
resources such as the
console/screen and files

38
Picture from: Silberschatz et al., Operating systems concepts (8th edition)

CPU preemption

• Protection mechanism to prevent a process from
monopolizing the CPU
– Allows the kernel to take back control of the CPU after a

maximum time interval
– Relies on the processor interrupt mechanism and on a timer

device

• The kernel programs the timer to send periodic
interrupts (e.g., every 10 ms)
– Device configuration is only allowed in privileged mode
– User code cannot re-program the timer

39

CPU preemption (continued)

• The kernel configures the processor to set up a timer interrupt
handler
– This handler is a piece of code provided by the kernel, and runs in

privileged mode
– In this way, each periodic timer interrupt will trigger the execution of

some kernel-defined code
– This kernel code can decide to keep the current process running or to

give the CPU to another one
– Note : interrupt handlers cannot be defined/modified by user-level code

• Thus, there is no way for user code to hijack the interrupt handler

• Result: a process cannot monopolize the CPU with an infinite loop
– At worst, it may get 1/N of CPU time if there are N CPU-hungry

processes

40

CPU scheduling

• The scheduler is a component of the OS, in charge
of deciding which process should run on the CPU (1
decision per CPU)

• When is the scheduler invoked?
– Periodically, for each timer interrupt
– Punctually, in reaction to some syscalls:

• Process termination (exit)
• Process explicitly releasing the CPU (yield, sleep, ...)
• Process requesting a blocking action
• Creation of a new process with a higher priority
• ...

– Punctually, in reaction to some interrupts
• E.g., a device notification for available data

41

CPU scheduling (continued)

• What does the scheduler do upon invocation?
– Make decision on the process P2 that should obtain the

CPU, based on:
• The list of processes that are ready to run
• ... and a given scheduling policy

– Save execution context of “outgoing” process P1
• (Except if this process is terminated)
• This allows resuming the execution of P1 later on

– Inject /restore the execution context of P2 on the CPU

• This sequence of steps is called a “context switch”

– Note that, just after the switch, P2 runs in kernel mode and must
eventually switch back to user mode. This will happen via a
return-from-interrupt or a return-from-syscall instruction. 43

Context switch

44

PCB

Pictures from: Silberschatz et al., Operating systems concepts (8th edition)

Context switch (continued)

45

A simplified code example (taken from “xv6”, a pedagogical mini-OS developed by
MIT – this version is for the RISC-V 64-bit processor)

void swtch(struct context *old, struct context *new);
Save current register context in old
and then load register context from new.
.globl swtch
swtch:
 # Save old registers
 sd ra, 0(a0)
 sd sp, 8(a0)
 sd s0, 16(a0)
 sd s1, 24(a0)
 sd s2, 32(a0)
 sd s3, 40(a0)
 sd s4, 48(a0)
 sd s5, 56(a0)
 sd s6, 64(a0)
 sd s7, 72(a0)
 sd s8, 80(a0)
 sd s9, 88(a0)
 sd s10, 96(a0)
 sd s11, 104(a0)

 # Load new registers
 ld ra, 0(a1)
 ld sp, 8(a1)
 ld s0, 16(a1)
 ld s1, 24(a1)
 ld s2, 32(a1)
 ld s3, 40(a1)
 ld s4, 48(a1)
 ld s5, 56(a1)
 ld s6, 64(a1)
 ld s7, 72(a1)
 ld s8, 80(a1)
 ld s9, 88(a1)
 ld s10, 96(a1)
 ld s11, 104(a1)

 # Finally return into new ctxt
 ret

 struct context {
 uint64 ra;
 uint64 sp;
 // callee-saved
 uint64 s0;
 uint64 s1;
 uint64 s2;
 uint64 s3;
 uint64 s4;
 uint64 s5;
 uint64 s6;
 uint64 s7;
 uint64 s8;
 uint64 s9;
 uint64 s10;
 uint64 s11;
};

Context switch (continued)

• Notes:
– Implementation details are very machine (processor)

dependent, but the general principle is the same

– A context switch has a non-negligible cost and
should not happen too often

– Warning: Do not confuse
• Context-switch (transition between two execution contexts)
• Mode switch (transition between user and kernel mode, in

the same execution context)

46

CPU scheduling examples

47

p1

p2

p3

time
exit

q (time quantum)

user codekernel code

timer
interrupts

CPU scheduling examples (continued)

48

p1

p2

p3

I/O request
(disk read)

time required for the disk request disk interrupt
signaling request

completion

p2 blocked

timer
interrupt

Memory virtualization and protection

• The OS must protect the memory space of a process from the
actions of other processes

• Definitions
– Address space: all memory locations that a program can name
– Virtual address: an address in a process address space
– Physical address: an address in real memory
– Address translation : map virtual address to physical address

• A translation is performed for each executed instruction that
issues a memory access
– Modern CPUs do this in hardware for speed

• Idea: if you cannot name it, you cannot touch it
– Ensure that the translations of a process do not include memory areas

of other processes
51

Memory virtualization and protection
(continued)
• CPU allows kernel-only virtual addresses

– The kernel is typically part of all address spaces, e.g., to handle a
system call in the same address space

– But the OS must ensure that applications cannot touch kernel memory

• CPU allows disabled virtual addresses
– Helps catching and halting buggy program that makes wild accesses
– Makes virtual memory seem bigger than physical (e.g., bring a page in

from disk only when accessed)

• CPU allows read-only virtual addresses
– E.g., allows sharing of code pages between processes

• CPU allows disabling execution of virtual addresses
– Makes certain (code injection) security attacks harder

52

Summary

• The main roles of an OS are virtualization and resource
management

• Protection is a fundamental concern

• Some key abstractions
– Processes
– Virtual address spaces

• Some key mechanisms (hardware-assisted)
– Privileged/unprivileged execution modes
– System calls and traps
– CPU preemption (relying on processor interrupts)
– Memory translation (implementation will be studied in next lectures)

53

Appendix 1: [Optional]
Virtualization

54

Main techniques for virtualization (1/5)

• In order to virtualize the resources of a machine,
operating systems rely on a combination of 3
main techniques:
– Multiplexing (in space and/or in time)
– Aggregation
– Emulation

• Note: these techniques are sometimes also used
within some hardware devices.

55

In
sp

ire
d

by
: S

al
tz

er
 &

 K
aa

sh
oe

k,
 B

ug
ni

on
 &

 N
ie

h
&

Ts
af

rir

Main techniques for virtualization (2/5)

56

Virtualization

X X X

X

Virtualization Virtualization

X XX

X

X

Y

Multiplexing Aggregation Emulation

In
sp

ire
d

by
: S

al
tz

er
 &

 K
aa

sh
oe

k,
 B

ug
ni

on
 &

 N
ie

h
&

Ts
af

rir

Main techniques for virtualization (3/5)

• Multiplexing:
– Exposes a resource among multiple virtual entities
– Two types of multiplexing: in space and in time
– Examples:

• CPUs (in time)
• Memory (in space and possibly also in time when using

swapping)
• I/O devices (in time, and also in space for storage devices)

57

In
sp

ire
d

by
: S

al
tz

er
 &

 K
aa

sh
oe

k,
 B

ug
ni

on
 &

 N
ie

h
&

Ts
af

rir

Main techniques for virtualization (4/5)

• Aggregation:
– The opposite of multiplexing
– Takes multiple resources and makes them appear as

a single abstraction
– Examples:

• Memory controller with several DIMMS (hardware)
• RAID (hardware or software)

58

In
sp

ire
d

by
: S

al
tz

er
 &

 K
aa

sh
oe

k,
 B

ug
ni

on
 &

 N
ie

h
&

Ts
af

rir

Main techniques for virtualization (5/5)

• Emulation
– Expose (using a level of indirection in software) a

virtual resource that is not provided by the underlying
machine

– Examples
• Sockets and files provide higher-level abstractions above

hardware devices
• Binary translation (compatibility layer)

– A CPU emulator can run programs compiled for a given
processor family X (e.g., Intel) on another processor family Y
(e.g., ARM)

59

In
sp

ire
d

by
: S

al
tz

er
 &

 K
aa

sh
oe

k,
 B

ug
ni

on
 &

 N
ie

h
&

Ts
af

rir

Appendix 2: [Optional]
Observing system & library calls

60

Tracing library & system calls

• It is possible to obtain a trace the calls performed by a
process via specific tools.

• This is useful for many different purposes: debugging,
performance troubleshooting, reverse engineering,
understanding complex applications …

• In Unix/Linux systems:
– The strace utility allows tracing system calls
– The ltrace utility (or a variant like latrace or uftrace)

allows tracing library calls

61

A simple tracing example

62

#include <stdio.h>
#include <unistd.h>

int main(){
 pid_t mypid;
 printf("Hello\n");
 mypid = getpid();
 printf("My pid is: %ld\n",
 (long)mypid);
}

$ gcc -Wall -o test.run test.c
$ ltrace ./test.run

__libc_start_main(0xaaaabec50814, 1, 0xffffe4670ff8, 0
<unfinished ...>
puts("Hello"Hello) = 6
getpid() = 21198
printf("My pid is: %ld\n", 21198My pid is: 21198) = 17
__cxa_finalize(0xaaaabec61008, 0xaaaabec507c0, 0x10d88, 1) = 1
+++ exited (status 0) +++

A simple tracing example (continued)

63

$ strace ./test.run

execve("./test.run", ["./test.run"], 0xffffd9332c50 /* 56 vars
*/) = 0
[… Many initialization system calls omitted for simplification]
write(1, "Hello\n", 6Hello) = 6
getpid() = 21391
write(1, "My pid is: 21391\n", 17My pid is: 21391) = 17

exit_group(0) = ?
+++ exited with 0 +++

A simple tracing example (continued)

64

$ strace -c ./test.run
Hello
My pid is: 21506
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 23,50 0,000329 329 1 execve
 15,71 0,000220 36 6 mmap
 9,71 0,000136 34 4 mprotect
 8,14 0,000114 38 3 newfstatat
 7,14 0,000100 33 3 munmap
 6,57 0,000092 30 3 brk
 5,29 0,000074 37 2 openat
 4,71 0,000066 33 2 write
 3,07 0,000043 43 1 1 faccessat
 2,93 0,000041 20 2 close
 2,29 0,000032 32 1 set_tid_address
 2,07 0,000029 29 1 read
 1,93 0,000027 27 1 rseq
 1,86 0,000026 26 1 getrandom
 1,71 0,000024 24 1 set_robust_list
 1,71 0,000024 24 1 prlimit64
 1,64 0,000023 23 1 getpid
------ ----------- ----------- --------- --------- ----------------
100,00 0,001400 41 34 1 total

