Processes
(part 2)

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:

— Arnaud Legrand, Noel De Palma, Sacha Krakowiak
— David Maziéres (Stanford)

* (many slides/figures directly adapted from those of the CS140
class)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus
PUschel (Carnegie Mellon University)

« Textbook: Computer Systems: A Programmer’s Perspective (2"
Edition) a.k.a. “CSAPP”

« CS 15-213/18-243 classes (many slides/figures directly adapted
from these classes)

— Textbooks (Silberschatz et al., Tanenbaum)
— Michael Kerrisk, The Linux Programming Interface

Outline

« Signals

* Inter-Process Communication facilities

(Remember previous lecture on processes)
Problem with mini-shell example

The shell correctly waits for and reaps the foreground
jobs

But what about background jobs?
— Will become zombies when they terminate
— Will never be reaped because shell (typically) will not terminate

— Will create a memory leak that could theoretically run the kernel
out of memory

— Modern Unix systems: once you exceed your process quota, your
shell can't run any new commands for you: fork () returns -1

Problem with mini-shell example (continued)
Introducing signals

Problem

— The shell doesn't know when a background job will finish
— By nature, it could happen at any time

— The shell's regular control flow cannot reap exited background
processes in a timely fashion

— Regular control flow is “wait until running job completes, then reap
it”

Solution: Exceptional control flow

— The kernel will interrupt regular processing to alert us when a
background process completes

— In Unix, the alert mechanism is called a signal

— This mechanism is actually more general and is also used for
other purposes (not just job completion)

Signals

A signal is a small message that notifies a process that an event of
some type has occurred in the system

akin to exceptions and interrupts (but managed in software, and handled
at the user level)

sent from the kernel (sometimes at the request of another process) to a

process

signal type is identified by small integer ID (1-30)
only information in a signal is its ID and the fact that it arrived

Some examples:

ID
2
9

11

14

17

Name
SIGINT
SIGKILL
SIGSEGV
SIGALRM
SIGCHLD

Default Action
Terminate
Terminate
Terminate & Dump
Terminate

Ignore

Corresponding Event

Interrupt (e.g., ctl-c from keyboard)

Kill program (cannot override or ignore)
Segmentation violation

Timer signal

Child stopped or terminated

Signals (continued)

 Many signals are generated and received
asynchronously

— l.e., these signals are triggered by an event that is not related to
the last instruction executed by the destination process

— Example: SIGCHLD indicating that a child process has
terminated or has been stopped (suspended)

Signals (continued)

* ... However, in some cases, signals are synchronously generated
and received immediately

— A process can send a signal to itself

— A signal may be triggered by a hardware fault, such as a floating point
exception/arithmetic error or a memory protection fault
* In general, it makes little sense to block or ignore such signals, as
the process cannot make progress
« The only appropriate reaction is often to terminate the process

... But there are some counter examples:

— User-level virtual memory management using mprotect () and
SIGSEGV handler (e.g., for user-level checkpointing)

— Calling a special function (e.g., siglongjmp) in the signal handler
allowing to “rewind” the execution of the process, so that it does not
keep re-executing the same problematic instruction

Sending a signal

 The kernel sends a signal to a destination process by

updating some state in the context of the destination
process

« The kernel sends a signal for one of the following reasons:

— The kernel has detected a system event. Examples:

— an erroneous arithmetic operation, such as a divide-by-zero
error (SIGFPE)

— the expiration of a timer (SIGALRM)
— the termination of a child process (SIGCHLD)

— Another process has invoked the kill system call to explicitly

request the kernel to send a signal to the destination process
9

Receiving a signal

« A destination process receives a signal when it is forced
by the kernel to react in some way to the arrival of the
signal

* Three possible ways to react:
— Ignore the signal (do nothing)
— Terminate the process (with optional core dump)

— Catch the signal by executing a user-level function called signal
handler

» Akin to a hardware-managed handler being called in response to an
interrupt/exception

10

Signal concepts

« Asignalis pending if sent but not yet received
— For a given signal type, a process can at most have one pending signal
instance

— Important: Signals are not queued
 |f a process has a pending signal of type k, then subsequent signals of type k
that are sent to that process are discarded

« A process can block the receipt of certain signals
— Blocked signals can be sent, but will not be received/handled by the
destination process until it unblocks the signal

— Useful to make sure that a signal handler does not inappropriately interfere
with the “regular” code of the receiver process

* A pending signal is received at most once
« Two particular signals: SIGKILL and SIGSTOP

* For security reasons, these signal cannot be blocked and their default
handler cannot be replaced 12

Signhal concepts (continued)

The kernel maintains pending and blocked bit vectors
in the context of each (receiver) process P

- pending: represents the set of pending signals

« Kernel sets bit k in pending when a signal of type k is sent to
process P

« Kernel clears bit k in pending when a signal of type K is received by
process P

— blocked: represents the set of currently blocked signals
« Can be set and cleared by using the sigprocmask function

13

Process groups

« Every process belongs to exactly one process group

pid=20 e
ot
Background Background
process group 32 process group 40
pid=21 pid=22 getpgrp ()
pgid=20 pgid=20 Return process group of current process
Foreground setpgid ()

process group 20 Change process group of a process

14

Sending signals with the kill program

« The kill program allows

sending an arbitrary signal to
a process or process group
(seeman 1 kill for details)

 Examples

- kill -9 24818
Send SIGKILL to process 24818

- kill -9 -24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps

linux>

15

Sending signals with the kill function

{

void example () (seeman 2 kill for details)

pid_t pid[N];
int i, child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {
printf ("Killing process %d\n", pid[i])
kill (pid[i], SIGINT);
}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid) ;

16

Receiving signals

Suppose kernel is returning from an exception handler (e.g., a
syscall handler) and is ready to pass control to process p

Kernel computes pnb = pending & ~blocked
— The set of pending nonblocked signals for process p

If (pnb == 0)
— Pass control to next instruction in the (user-level) logical flow for p

Else

— Choose least nonzero bit k in pnb and force process p to receive
signal k

— The receipt of the signal triggers some action by p
— Repeat for all nonzero k in pnb

— Pass control to next instruction in (user-level) logical flow for p

17

Default actions

« Each signal type has a predefined default
action/handler, which is one of:

— The process terminates
— The process terminates and dumps core
— The process stops until restarted by a SIGCONT signal

— The process ignores the signal

18

Installing signal handlers

 The signal function modifies the default action associated with the
receipt of signal signum:

- handler t *signal (int signum, handler t *handler)

« Different values for handler:
— SIG_IGN: ignore signals of type signum
— SIG DFL: revert to the default action on receipt of signals of type signum

— Otherwise, handler is the address of a signal handler
» Called when process receives signal of type signum
« Referred to as “installing “the handler
« Executing handler is called “catching ”or “handling ”the signal

» When the handler executes its return statement, control passes back to
instruction in the control flow of the process that was interrupted by receipt of the
signal

« Warning: the signal function is not portable (different behavior on different

Unix systems) and should be avoided — Preferably use sigaction instead
19

Installing signal handlers (continued)

int sigaction(int sigq,
const struct sigaction *act,

struct sigaction *oldact)

struct sigaction {

void (*sa_handler) (int) ; /* Address of handler */
sigset t sa mask; /* Signals blocked during handler

invocation */
int sa_flags; /* Flags controlling handler
invocation */

void (*sa_restorer) (void) ; /* Not for application use */

See man 2 sigaction and man 7 signal for further details

20

Installing signal handlers (continued)

 In order to avoid the complexity of sigaction, the “CSAPP”
textbook provides a wrapper function called Signal (beware of the

case: signal vs. Signal)
— handler t *Signal (int signum, handler t *handler)

« Same interface as signal, but portable because internally relies on
sigaction

« Note that the list of blocked signals during handler invocation only
contains signal signum (i.e., signals of same type)

« (Code available in the same files as the RIO functions:

— as part of the ecsapp.h and csapp . ¢ files available from:
http://csapp.cs.cmu.edu/public/code.html

21

http://csapp.cs.cmu.edu/public/code.html

Signal handler example

void chld handler (int sig)‘F*

{

printf ("Process %d received signal %d\n",

getpid (), sigqg);
return;

}

int main|()

{
Signal (SIGCHLD, chld handler);

Note: a signal handler must have the
following signature:

* void return type

 a single input parameter of type int

Process 24977 received signal 17

if (fork() == 0) {
sleep(2) ;
exit(0) ;
} else {
while (1) ;
}
exit (0) ;
} linux> ./test
~C
linux>

User: ctrl-c (onc/

The default SIGINT handler terminates the process

22

Signal handler example: a program that reacts to

externally generated events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {

printf ("received SIGINT\n");

sleep (2) ; <
}

int main() {

Note that main will not
resume before the
execution of the whole
handler is completed

Signal (SIGINT, handler); /* installs ctl-c handler */

while (1) {
}
}

23

Signal handler example: a program that reacts to
externally generated events (ctrl-c) - variant

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler (int sig) {
printf ("You think hitting ctrl-c will stop the bomb?\n") ;

sleep(2) ;

printf ("Well...");

fflush (stdout) ; Note that main will never
sleep (1) ; resume because exit

1 f no " : .
Z:iﬁo)(; (K\n)/ terminates the process

}

int main() {
Signal (SIGINT, handler); /* installs ctl-c handler */
while (1) {
}

}

Signal handler example: a program that
reacts to internally generated events

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler (int sig) {
printf ("BEEP\n") ;
fflush (stdout) ;

if (++beeps < 5)
alarm(1l) ;

else {
printf ("BOOM!\n") ;
exit (0) ;

}

main () {
Signal (SIGALRM, handler);
alarm(l); /* send SIGALRM in
1 second */

while (1) {
/* handler returns here */

}
}

linux> a.out
BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

linux>

25

Signal handlers as concurrent flows

« A signal handler is a separate logical flow (not process)
that runs concurrently with the main program

= “concurrently” in the “not sequential” sense

Process A Process A Process B

while (1) handler () {

}

Time

26

Another view of signal handlers as concurrent flows

Signal sent —

Signal received —>

Process A

Icurr

I next

Process B

user code (main)

kernel code } context switch
user code (main)

kernel code } context switch
user code (handler)

kernel code

user code (main)

27

Sending signals from the keyboard

* Typing ctrl-c (ctrl-z)sends a SIGINT (SIGTSTP) to every job
in the foreground process group

— SIGINT — default action is to terminate each process
— SIGTSTP — default action is to stop (suspend) each process

pid=20

e pid=40
BoEce pgid=40
Background Background
process group 32 process group 40
pid=21 pid=22
pgid=20 pgid=20
Foreground

process group 20 28

Example of ctrl-c and ctrl-z

bluefish> ./forks 17 STAT (process state) Legend:
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107 First letter:
<user types ctrl-z S: sleeping
— jog number T: stopped
117+ Stopped R: running
bluefish> ps w
PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh Second letter.
28107 pts/8 T 0:01 ./forks 17 s: session leader
28108 pts/8 T 0:01 ./forks 17 +: foreground proc group
28109 pts/8 R+ 0:00 ps w

bluefish> fg %1\ See “man ps’ for more
./forks 17 bring job on foreground details

<user types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

29

Signal handler funkiness

int ccount = 0;
void child handler (int sig)

{

int child status; * Pending signals are not

pid t pid = wait(&child status); queued
cc?u‘;"l'; ved sicnal sd £ N — For a given recipient
1) m r [¢) n" , .
prin (. ece:n.re signa ro process s prOCGSS, for eaCh S|gna|
sig, pid); . . .
} type, there is just a single bit
indicating whether or not
void example () signal is pending

{
pid t pid[N]; _ _
int i, child status; — Even if multiple processes

ccount = N; have sent this signal

Signal (SIGCHLD, child handler);
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0) {
sleep(l); /* deschedule child */
exit(0); /* Child: Exit */
}
while (ccount > 0)
pause(); /* Suspend until signal occurs */

30

Dealing with nonqueuing signals

* Must check for all terminated jobs
— Typically loop with waitpid

void child handler2(int sig) wait for any child process

{ .
int child status; / non-blocking mode
pid t pid; l
while ((pid = waitpid(-1, &child status, WNOHANG)) > 0) {
ccount--;

printf ("Received signal %d from process %d\n", sig, pid)

}

void example ()

{

Signal (SIGCHLD, child handler2);

.
4

31

Signal handler funkiness (continued)

« Signal arrival during long system calls (say a read)

« Signal handler interrupts read call
— Linux: upon return from signal handler, the read call is restarted
automatically

— Some other flavors of Unix can cause the read call to fail with an
EINTR error number (errno)

In this case, the application program can restart the slow system
call.

« Subtle differences like these complicate the writing of
portable code that uses signals

32

Async-signal safety

 What happens if a process is interrupted by a signal in
the middle of a call to a library/system function (e.g.,
malloc)?

— The signal handler may also execute the same function or a
related one (e.qg., free ())

— If the function(s) relies (rely) on global or static variables, the
variables may become inconsistent because of interleaved
streams of instructions

* Only a limited set of functions can be safely called from a
signal handler
— Such functions are called “async-signal-safe ”

— They either do not use global variables or are not interruptible by
signals

33

Async-signal safety (continued)

 Notes:

— The POSIX standard defines a list of 117 async-signal-safe
functions

— Seeman 7 signal for details

— Examples
« write is on the list

« printf is not (the previous code examples are actually unsafe)

35

Summary about signals

« Signals provide process-level exception handling
— Can generate from user programs

— Can define effect by declaring signal handler

« Some caveats
— Very high overhead
« >10,000 clock cycles
— Do not have queues
 Just one bit for each pending signal type

« Therefore, only to be used for exceptional conditions, not for
“regular” communication

36

Outline

« Signals

* Inter-Process Communication facilities

37

IPC facilities

* Unix systems provide a rich set of mechanisms for Inter-
Process Communication (IPC)

 These facilities can be divided into three broad functional
categories:
— Communication: exchanging data between processes

— Synchronization: synchronizing the actions of processes (or
threads)

— Signals: intended primarily for other purposes but can
sometimes be used for synchronization (or, more rarely, for
communication)

« Standard signals (studied previously)
« Real-time signals (not studied in this lecture)

38

|IPC facilities (continued)

* For a given kind of IPC facility, a modern system will
often provide several implementations, with slightly
different APls

¢ Why?
— Similar facilities evolved on different Unix variants (e.g., System
V, BSD) and later came to be ported to other Unix systems

— New facilities have been developed to address design
deficiencies in similar earlier facilities. For instance, the POSIX
IPC facilities (message queues, semaphores and shared
memory) were designed as an improvement on the older System
V IPC facilities

39

Synchronization facilities

« Semaphores

* File locks

* Mutexes (for threads)

» Condition variables (for threads)

 These facilities will be studied in other lectures

40

Communication facilities

 Shared memory

— Memory mappings (studied previously — see mmap ())
» Mapped file
* Anonymous mappings

— Shared memory segments

« Data transfers

— Byte stream
* Pipes (studied previously)
* FIFOs, a.k.a. “named pipes” (studied previously)
« Stream sockets

— Messages
 Message queues

« Datagram sockets
41

Communication facilities
Data transfers vs. shared memory

 Data-transfer facilities

One process writes data into the IPC facility, another process reads it

Require two transfers: from source to kernel, then from kernel to
destination

Reads are “destructive”. a read operation consumes data, and that data
is not available to any other process

Reader-writer synchronization is automatic: reader will block until some
data becomes available

« Shared memory

Requires a single copy of the data (the kernel makes page-table entries
in each process point to the same pages in RAM)

Data placed in shared memory is visible to all the processes that share
that memory

Fast communication: once set up, a shared memory zone does not
require data transfers, nor syscalls

... But requires explicit synchronization (see details in a future lecture) »

Data transfers
Subcategories

 Byte stream
— Undelimited (“opaque”) byte stream

— Each read operation may read an arbitrary number of bytes from
the IPC facility, regardless of the size of the blocks written by the
writer

« Messages

— The data exchanged via messaging facilities takes the form of
delimited messages. Each read operation reads a whole
message, as written by the writer process

— It is not possible to read part of a message, leaving the
remainder on the IPC facility, nor is it possible to read multiple
messages in a single read operation

43

Higher-level IPC facilities

 Remote procedure call (RPC)

— Allows a “client” process to invoke the execution of a procedure in the context of
a “server’ process

— Applicable to processes running on the same machine, but also to processes
running on different machines

— Typically built on top on other IPC facilities, such as sockets

— Uses “stub” procedures on each side to hide the details from application code
(e.g., packing parameters)

 Remote method invocation (RMI)

— Mechanism similar to RPC in the context of the Java object-oriented
system/language

— Allows a (Java) program running on one machine to invoke a method on an
object within a program running on another machine

 Message passing interface (MPI)

— Designed for communication and synchronization between multiple (potentially
distributed) processes in a parallel application

— Offers a large set of primitives for point-to-point and collective communications a4

References

« W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2nd Edition,
Addison Wesley, 2005

* Michael Kerrisk. The Linux Programming Interface (a
Linux and UNIX system Programming Handbook). No
Starch Press, 2010

45

