
Processes
(part 2)

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (many slides/figures directly adapted from those of the CS140
class)

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus

Püschel (Carnegie Mellon University)
• Textbook: Computer Systems: A Programmer’s Perspective (2nd

Edition) a.k.a. “CSAPP”
• CS 15-213/18-243 classes (many slides/figures directly adapted

from these classes)
– Textbooks (Silberschatz et al., Tanenbaum)
– Michael Kerrisk, The Linux Programming Interface

2

Outline

• Signals

• Inter-Process Communication facilities

3

(Remember previous lecture on processes)
Problem with mini-shell example

• The shell correctly waits for and reaps the foreground
jobs

• But what about background jobs?
– Will become zombies when they terminate
– Will never be reaped because shell (typically) will not terminate
– Will create a memory leak that could theoretically run the kernel

out of memory
– Modern Unix systems: once you exceed your process quota, your

shell can't run any new commands for you: fork() returns -1

4

Problem with mini-shell example (continued)
Introducing signals
• Problem

– The shell doesn't know when a background job will finish
– By nature, it could happen at any time
– The shell's regular control flow cannot reap exited background

processes in a timely fashion
– Regular control flow is “wait until running job completes, then reap

it”

• Solution: Exceptional control flow
– The kernel will interrupt regular processing to alert us when a

background process completes
– In Unix, the alert mechanism is called a signal
– This mechanism is actually more general and is also used for

other purposes (not just job completion)
5

Signals

6

• A signal is a small message that notifies a process that an event of
some type has occurred in the system
– akin to exceptions and interrupts (but managed in software, and handled

at the user level)
– sent from the kernel (sometimes at the request of another process) to a

process
– signal type is identified by small integer ID (1-30)
– only information in a signal is its ID and the fact that it arrived

Some examples:
ID Name Default Action Corresponding Event
2 SIGINT Terminate Interrupt (e.g., ctl-c from keyboard)
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Signals (continued)

• Many signals are generated and received
asynchronously

– i.e., these signals are triggered by an event that is not related to
the last instruction executed by the destination process

– Example: SIGCHLD indicating that a child process has
terminated or has been stopped (suspended)

7

Signals (continued)

• ... However, in some cases, signals are synchronously generated
and received immediately

– A process can send a signal to itself

– A signal may be triggered by a hardware fault, such as a floating point
exception/arithmetic error or a memory protection fault

• In general, it makes little sense to block or ignore such signals, as
the process cannot make progress

• The only appropriate reaction is often to terminate the process
• ... But there are some counter examples:

– User-level virtual memory management using mprotect() and
SIGSEGV handler (e.g., for user-level checkpointing)

– Calling a special function (e.g., siglongjmp) in the signal handler
allowing to “rewind” the execution of the process, so that it does not
keep re-executing the same problematic instruction

8

Sending a signal

9

• The kernel sends a signal to a destination process by
updating some state in the context of the destination
process

• The kernel sends a signal for one of the following reasons:

– The kernel has detected a system event. Examples:
– an erroneous arithmetic operation, such as a divide-by-zero

error (SIGFPE)
– the expiration of a timer (SIGALRM)
– the termination of a child process (SIGCHLD)

– Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process

Receiving a signal

• A destination process receives a signal when it is forced
by the kernel to react in some way to the arrival of the
signal

• Three possible ways to react:
– Ignore the signal (do nothing)
– Terminate the process (with optional core dump)
– Catch the signal by executing a user-level function called signal

handler
• Akin to a hardware-managed handler being called in response to an

interrupt/exception

10

Signal concepts

12

• A signal is pending if sent but not yet received
– For a given signal type, a process can at most have one pending signal

instance
– Important: Signals are not queued

• If a process has a pending signal of type k, then subsequent signals of type k
that are sent to that process are discarded

• A process can block the receipt of certain signals
– Blocked signals can be sent, but will not be received/handled by the

destination process until it unblocks the signal
– Useful to make sure that a signal handler does not inappropriately interfere

with the “regular” code of the receiver process

• A pending signal is received at most once
• Two particular signals: SIGKILL and SIGSTOP

• For security reasons, these signal cannot be blocked and their default
handler cannot be replaced

Signal concepts (continued)

13

• The kernel maintains pending and blocked bit vectors
in the context of each (receiver) process P

– pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is sent to
process P

• Kernel clears bit k in pending when a signal of type k is received by
process P

– blocked: represents the set of currently blocked signals
• Can be set and cleared by using the sigprocmask function

Process groups

14

• Every process belongs to exactly one process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process

Sending signals with the kill program

15

• The kill program allows
sending an arbitrary signal to
a process or process group
(see man 1 kill for details)

• Examples
– kill –9 24818

Send SIGKILL to process 24818

– kill –9 –24817
Send SIGKILL to every process in
process group 24817

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Sending signals with the kill function

16

void example()
{
 pid_t pid[N];
 int i, child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 while(1); /* Child infinite loop */

 /* Parent terminates the child processes */
 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 /* Parent reaps terminated children */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

(see man 2 kill for details)

Receiving signals

17

• Suppose kernel is returning from an exception handler (e.g., a
syscall handler) and is ready to pass control to process p

• Kernel computes pnb = pending & ~blocked
– The set of pending nonblocked signals for process p

• If (pnb == 0)
– Pass control to next instruction in the (user-level) logical flow for p

• Else
– Choose least nonzero bit k in pnb and force process p to receive

signal k
– The receipt of the signal triggers some action by p
– Repeat for all nonzero k in pnb
– Pass control to next instruction in (user-level) logical flow for p

Default actions

18

• Each signal type has a predefined default
action/handler, which is one of:

– The process terminates
– The process terminates and dumps core
– The process stops until restarted by a SIGCONT signal
– The process ignores the signal

Installing signal handlers

19

• The signal function modifies the default action associated with the
receipt of signal signum:
– handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
– SIG_IGN: ignore signals of type signum
– SIG_DFL: revert to the default action on receipt of signals of type signum
– Otherwise, handler is the address of a signal handler

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes back to

instruction in the control flow of the process that was interrupted by receipt of the
signal

• Warning: the signal function is not portable (different behavior on different
Unix systems) and should be avoided – Preferably use sigaction instead

Installing signal handlers (continued)

int sigaction(int sig,
 const struct sigaction *act,
 struct sigaction *oldact)

20

struct sigaction {
 void (*sa_handler)(int); /* Address of handler */
 sigset_t sa_mask; /* Signals blocked during handler

 invocation */
 int sa_flags; /* Flags controlling handler

 invocation */

 void (*sa_restorer)(void); /* Not for application use */
};

See man 2 sigaction and man 7 signal for further details

Installing signal handlers (continued)

• In order to avoid the complexity of sigaction, the “CSAPP”
textbook provides a wrapper function called Signal (beware of the
case: signal vs. Signal)
– handler_t *Signal(int signum, handler_t *handler)

• Same interface as signal, but portable because internally relies on
sigaction

• Note that the list of blocked signals during handler invocation only
contains signal signum (i.e., signals of same type)

• Code available in the same files as the RIO functions:
– as part of the csapp.h and csapp.c files available from:

http://csapp.cs.cmu.edu/public/code.html

21

http://csapp.cs.cmu.edu/public/code.html

Signal handler example

22

void chld_handler(int sig)
{
 printf("Process %d received signal %d\n",
 getpid(), sig);
 return;
}

int main()
{
 Signal(SIGCHLD, chld_handler);
 if (fork() == 0) {
 sleep(2);
 exit(0);
 } else {
 while (1);
 }
 exit(0);
} linux> ./test

Process 24977 received signal 17
^C
linux>

User: ctrl-c (once)
The default SIGINT handler terminates the process

Note: a signal handler must have the
following signature:
• void return type
• a single input parameter of type int

Signal handler example: a program that reacts to
externally generated events (ctrl-c)

23

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
 printf("received SIGINT\n");
 sleep(2);
}

int main() {
 Signal(SIGINT, handler); /* installs ctl-c handler */
 while(1) {
 }
}

Note that main will not
resume before the
execution of the whole
handler is completed

Signal handler example: a program that reacts to
externally generated events (ctrl-c) - variant

24

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
 printf("You think hitting ctrl-c will stop the bomb?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK\n");
 exit(0);
}

int main() {
 Signal(SIGINT, handler); /* installs ctl-c handler */
 while(1) {
 }
}

Note that main will never
resume because exit
terminates the process

Signal handler example: a program that
reacts to internally generated events

25

#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {
 printf("BEEP\n");
 fflush(stdout);

 if (++beeps < 5)
 alarm(1);
 else {
 printf("BOOM!\n");
 exit(0);
 }
}

main() {
 Signal(SIGALRM, handler);
 alarm(1); /* send SIGALRM in
 1 second */

 while (1) {
 /* handler returns here */
 }
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
linux>

Signal handlers as concurrent flows

26

• A signal handler is a separate logical flow (not process)
that runs concurrently with the main program
§ “concurrently” in the “not sequential” sense

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Another view of signal handlers as concurrent flows

27

Signal sent

Signal received

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Sending signals from the keyboard

28

• Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job
in the foreground process group
– SIGINT – default action is to terminate each process
– SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Example of ctrl-c and ctrl-z

29

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<user types ctrl-z>

[1]+ Stopped
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg %1
./forks 17
<user types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

job number

bring job on foreground

Signal handler funkiness

30

• Pending signals are not
queued
– For a given recipient

process, for each signal
type, there is just a single bit
indicating whether or not
signal is pending

– Even if multiple processes
have sent this signal

int ccount = 0;
void child_handler(int sig)
{
 int child_status;
 pid_t pid = wait(&child_status);
 ccount--;
 printf("Received signal %d from process %d\n",
 sig, pid);
}

void example()
{
 pid_t pid[N];
 int i, child_status;
 ccount = N;
 Signal(SIGCHLD, child_handler);
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 sleep(1); /* deschedule child */
 exit(0); /* Child: Exit */
 }
 while (ccount > 0)
 pause(); /* Suspend until signal occurs */
}

Dealing with nonqueuing signals

31

• Must check for all terminated jobs
– Typically loop with waitpid

void child_handler2(int sig)
{
 int child_status;
 pid_t pid;
 while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {
 ccount--;
 printf("Received signal %d from process %d\n", sig, pid);
 }
}

void example()
{
 . . .
 Signal(SIGCHLD, child_handler2);
 . . .
}

wait for any child process
non-blocking mode

Signal handler funkiness (continued)

32

• Signal arrival during long system calls (say a read)

• Signal handler interrupts read call
– Linux: upon return from signal handler, the read call is restarted

automatically
– Some other flavors of Unix can cause the read call to fail with an
EINTR error number (errno)
In this case, the application program can restart the slow system
call.

• Subtle differences like these complicate the writing of
portable code that uses signals

Async-signal safety

• What happens if a process is interrupted by a signal in
the middle of a call to a library/system function (e.g.,
malloc)?
– The signal handler may also execute the same function or a

related one (e.g., free())
– If the function(s) relies (rely) on global or static variables, the

variables may become inconsistent because of interleaved
streams of instructions

• Only a limited set of functions can be safely called from a
signal handler
– Such functions are called “async-signal-safe”
– They either do not use global variables or are not interruptible by

signals

33

Async-signal safety (continued)

• Notes:
– The POSIX standard defines a list of 117 async-signal-safe

functions
– See man 7 signal for details
– Examples

• write is on the list
• printf is not (the previous code examples are actually unsafe)

35

Summary about signals

36

• Signals provide process-level exception handling
– Can generate from user programs
– Can define effect by declaring signal handler

• Some caveats
– Very high overhead

• >10,000 clock cycles
– Do not have queues

• Just one bit for each pending signal type
• Therefore, only to be used for exceptional conditions, not for

“regular” communication

Outline

• Signals

• Inter-Process Communication facilities

37

IPC facilities

• Unix systems provide a rich set of mechanisms for Inter-
Process Communication (IPC)

• These facilities can be divided into three broad functional
categories:
– Communication: exchanging data between processes
– Synchronization: synchronizing the actions of processes (or

threads)
– Signals: intended primarily for other purposes but can

sometimes be used for synchronization (or, more rarely, for
communication)

• Standard signals (studied previously)
• Real-time signals (not studied in this lecture)

38

IPC facilities (continued)

• For a given kind of IPC facility, a modern system will
often provide several implementations, with slightly
different APIs

• Why?
– Similar facilities evolved on different Unix variants (e.g., System

V, BSD) and later came to be ported to other Unix systems

– New facilities have been developed to address design
deficiencies in similar earlier facilities. For instance, the POSIX
IPC facilities (message queues, semaphores and shared
memory) were designed as an improvement on the older System
V IPC facilities

39

Synchronization facilities

• Semaphores
• File locks
• Mutexes (for threads)
• Condition variables (for threads)

• These facilities will be studied in other lectures

40

Communication facilities

• Shared memory
– Memory mappings (studied previously – see mmap())

• Mapped file
• Anonymous mappings

– Shared memory segments
• Data transfers

– Byte stream
• Pipes (studied previously)
• FIFOs, a.k.a. “named pipes” (studied previously)
• Stream sockets

– Messages
• Message queues
• Datagram sockets

41

Communication facilities
Data transfers vs. shared memory
• Data-transfer facilities

– One process writes data into the IPC facility, another process reads it
– Require two transfers: from source to kernel, then from kernel to

destination
– Reads are “destructive”: a read operation consumes data, and that data

is not available to any other process
– Reader-writer synchronization is automatic: reader will block until some

data becomes available

• Shared memory
– Requires a single copy of the data (the kernel makes page-table entries

in each process point to the same pages in RAM)
– Data placed in shared memory is visible to all the processes that share

that memory
– Fast communication: once set up, a shared memory zone does not

require data transfers, nor syscalls
– ... But requires explicit synchronization (see details in a future lecture)

42

Data transfers
Subcategories
• Byte stream

– Undelimited (“opaque”) byte stream
– Each read operation may read an arbitrary number of bytes from

the IPC facility, regardless of the size of the blocks written by the
writer

• Messages
– The data exchanged via messaging facilities takes the form of

delimited messages. Each read operation reads a whole
message, as written by the writer process

– It is not possible to read part of a message, leaving the
remainder on the IPC facility, nor is it possible to read multiple
messages in a single read operation

43

Higher-level IPC facilities

• Remote procedure call (RPC)
– Allows a “client” process to invoke the execution of a procedure in the context of

a “server” process
– Applicable to processes running on the same machine, but also to processes

running on different machines
– Typically built on top on other IPC facilities, such as sockets
– Uses “stub” procedures on each side to hide the details from application code

(e.g., packing parameters)

• Remote method invocation (RMI)
– Mechanism similar to RPC in the context of the Java object-oriented

system/language
– Allows a (Java) program running on one machine to invoke a method on an

object within a program running on another machine

• Message passing interface (MPI)
– Designed for communication and synchronization between multiple (potentially

distributed) processes in a parallel application
– Offers a large set of primitives for point-to-point and collective communications

44

References

• W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2nd Edition,
Addison Wesley, 2005

• Michael Kerrisk. The Linux Programming Interface (a
Linux and UNIX system Programming Handbook). No
Starch Press, 2010

45

