Operating Systems

Thread Synchronization Primitives: Exercices

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025


mailto:thomas.ropars@univ-grenoble-alpes.fr

Need for locks

Do we have to use a lock to implement mutual exclusion between
functions f1 and 27

int a =0;

void f1(void){
a: a+1;

void f2(void){

a=a—171;



Need for locks

Do we have to use a lock to implement mutual exclusion between
functions f1 and 27

int a =0;
int b =0;

void f1(void){

int x = a;
int y = b;

}

void f2(void){
int u=a-+1;
int v—=->b+1,;



Need for locks

Do we have to use a lock to implement mutual exclusion between
functions f1 and 127

void f1(void){

int a =0;
int x = 0;
a =a+x
}
void f2(void){
int a =0;
int y =0;
a=a-+y,



Using multiple locks
Will this code work?

mutex_t m1l, m2;

void pl (void xignored) {
lock (m1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}

void p2 (void xignored) {
lock (m1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}



Using multiple locks
Will this code work?

mutex_t m1l, m2;

void pl (void xignored) {
lock (m1);
lock (m2);
/* critical section */
unlock (m2);
unlock (m1);

}

void p2 (void xignored) {
lock (m2);
lock (m1);
/* critical section */
unlock (m1);
unlock (m2);

}



Producer-Consumer: if vs while

Is this correct in the general case?

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (5;) {
/* produce an item and
put in nextProduced */

mutex_lock (&mutex);
if (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

L

void consumer (void *ignored) {
for (;) {
mutex_lock (&mutex);
if (count == 0)
cond_wait (&nonempty, &mutex)

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

/* consume the item
in nextConsumed */

9~




Producer-Consumer: if vs while

Is this correct with a single producer and a single consumer?

mutex_t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (5;) {
/* produce an item and
put in nextProduced */

mutex_lock (&mutex);
if (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) J BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

L

void consumer (void *ignored) {
for (;) {
mutex_lock (&mutex);
if (count == 0)
cond_wait (&nonempty, &mutex)

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

/* consume the item
in nextConsumed */

9~




