Operating Systems

Thread Synchronization Primitives

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

The content of these lectures is inspired by:
® The lecture notes of Prof. André Schiper.
® The lecture notes of Prof. David Mazieres.

e QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:
® Modern Operating Systems by A. Tanenbaum
e QOperating System Concepts by A. Silberschatz et al.

Agenda

Goals of the lecture

A Multi-Threaded Application
Mutual Exclusion

Locks

Semaphores

The Producer-Consumer Problem
Condition Variables

Monitors

Other synchronization problems

Seen previously

Threads
® Schedulable execution context

® Multi-threaded program = multiple threads in the same
process address space

® Allow a process to use several CPUs

e Allow a program to overlap 1/O and computation

Implementation
® Kernel-level threads
® User-level threads

® Preemptive vs non-preemptive

Seen previously

POSIX threads API (pthreads) — pseudo API:

® tid thread create(void (*fn)(void *), void *arg);
® yoid thread_exit();

® void thread_join(tid thread);

Data sharing

® Threads share the data of the enclosing process

Agenda

Goals of the lecture

Motivation

Observations
® Multi-thread programming is used in many contexts.
It is also called concurrent programming.

® Shared memory is the inter-thread communication medium.

Is it easy to use shared memory to cooperate?

Motivation

Observations
® Multi-thread programming is used in many contexts.
It is also called concurrent programming.

® Shared memory is the inter-thread communication medium.

Is it easy to use shared memory to cooperate?
NO

The problem:

A set of threads executing on a shared-memory (multi-)processor is
an asynchronous system.

® A thread can be preempted at any time.

® Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).

Cooperating in an asynchronous system

Example
2 threads have access to a shared memory

e A data structure (including multiple fields) is stored in shared
memory

® Both threads need to update the data structure

® The system is asynchronous

How can B know:
® whether A is currently modifying the data structure?
® whether A has updated all the fields it wanted to update?

High-level goals of the lecture

Start thinking like a concurrent programmer

Learn to identify concurrency problems

® | earn to cooperate through shared memory

> Synchronization
» Communication

Think about the correctness of an algorithm

Content of this lecture

Classical concurrent programming problems

® Mutual exclusion

® Producer-consumer

Concepts related to concurrent programming
e Critical section ® Deadlock
® Busy waiting

Synchronization primitives

® | ocks e Condition variables

® Semaphores

10

Agenda

A Multi-Threaded Application

11

Example: A chat server

Single-threaded version

il

stat. counters

users/channels
12

Example:

A chat server

Single-threaded version

M.@

il

stat. counters

users/channels
12

Example: A chat server

Single-threaded version

il

xe
> stat. counters
e—— \)Qb

— —
=N
Yoy
(e}
Z Wy .

users/channels
12

Example:

A chat server

First multi-threaded version

SBe

il

stat. counters

users/channels
13

Example: A chat server

First multi-threaded version

ot

p——¥ stat. counters

4

ol
i=

users/channels
13

Example: A chat server

First multi-threaded version

il

stat. counters

users/channels
13

Example: A chat server

First multi-threaded version

stat. counters

users/channels
13

Example: A chat server

First multi-threaded version

ot

—— @ stat. counters

users/channels
13

Example: A chat server

First multi-threaded version

ot

— @ stat. counters

users/channels
13

Example: A chat server

Second multi-threaded version

il

stat. counters
— :
—_—

thread pool o
E

users/channels

14

ife @

Example: A chat server

Second multi-threaded version

il

stat. counters

®
AN

put
_ get
>@—)
thread pool

users/channels

14

Example: A chat server

Second multi-threaded version

il

p——¥ stat. counters

% thread pool

users/channels

14

Example: A chat server

Second multi-threaded version

il
—

stat. counters

P e———N
thread pool o
E

users/channels

14

Classical problems

Synchronization

Mutual exclusion

® Avoid that multiple threads execute operations on the same
data concurrently (critical sections)

® Example: Update data used for statistics

15

Classical problems

Synchronization

Mutual exclusion

® Avoid that multiple threads execute operations on the same
data concurrently (critical sections)

® Example: Update data used for statistics

Reader-Writer
® Allow multiple readers or a single writer to access a data

® Example: Access to list of users and channels

15

Classical problems

Cooperation

Producer-Consumer

® Some threads produce some data that are consumed by other
threads

® Example: A queue of tasks

16

Agenda

Mutual Exclusion

17

A shared counter

int count = O;

Thread 1: Thread 2:
for(i=0; i<10; i++){ for(i=0; i<10; i++){
count++; count++;
} }

What is the final value of count?

18

A shared counter

int count = O;

Thread 1: Thread 2:
for(i=0; i<10; i++){ for(i=0; i<10; i++){
count++; count++;
} }

What is the final value of count?

® A value between 2 and 20

18

A shared counter: Explanation

Let's have a look at the (pseudo) assembly code for count++:

mov count, register
add $0x1, register
mov register, count

19

A shared counter: Explanation

Let's have a look at the (pseudo) assembly code for count++:

mov count, register
add $0x1, register
mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register
mov count, register
add $0x1, register
mov register, count
mov register, count

19

A shared counter: Explanation

Let's have a look at the (pseudo) assembly code for count++:

mov count, register
add $0x1, register
mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register
mov count, register
add $0x1, register
mov register, count
mov register, count

At the end, count=1 :-(

19

A shared counter

This may happen:
® When threads execute on different processor cores

® \When preemptive threads execute on the same core
A thread can be preempted at any time in this case

20

A shared counter

This may happen:
® When threads execute on different processor cores

® \When preemptive threads execute on the same core
A thread can be preempted at any time in this case

We should note that:
® Read/write instructions (mov) are atomic

® Executing i++ corresponds to executing 3 atomic instructions

20

Critical section

Critical resource
A critical resource should not be accessed by multiple threads at
the same time. It should be accessed in mutual exclusion.

21

Critical section

Critical resource
A critical resource should not be accessed by multiple threads at
the same time. It should be accessed in mutual exclusion.

Critical section (CS)

A critical section is a part of a program code that accesses a
critical resource.

21

Critical section: Definition of the problem

Safety

® Mutual exclusion: At most one thread can be in CS at a time

Liveness
® Progress: If no thread is currently in CS and threads are trying
to access, one should eventually be able to enter the CS.
® Bounded waiting: Once a thread T starts trying to enter the
CS, there is a bound on the number of times other threads
get in.

22

Critical section: About liveness requirements

Liveness requirements are mandatory for a solution to be useful

23

Critical section: About liveness requirements

Liveness requirements are mandatory for a solution to be useful

Progress vs. Bounded waiting

® Progress: If no thread can enter CS, we don't have progress.

® Bounded waiting: If thread A is waiting to enter CS while B
repeatedly leaves and re-enters C.S. ad infinitum, we don't
have bounded waiting

23

Shared counter: New version

Thread 1: Thread 2:
Enter CS; Enter CS;
count++; count++;
Leave CS; Leave CS;

24

Shared counter:

Thread 1:

Enter CS;
count++;
Leave CS;

New version

Thread 2:

Enter CS;
count++;
Leave CS;

How to implement Enter CS and Leave CS?

24

Implementation: First try using busy waiting

Shared variables:

int count=0;

int busy=0;

Thread 1: Thread 2:
while(busy){;} while (busy){;?}
busy=1; busy=1;
count++; count++;
busy=0; busy=0;

25

Exercise

Show through an example that the solution violates safety.

26

Exercise

Show through an example that the solution violates safety.

while(busy){;}
while(busy){;}
busy =1

busy =1

count++
count++

® The 2 threads access count at the same time.

26

Exercise

Show through an example that the solution violates liveness.

27

Exercise

Show through an example that the solution violates liveness.

while(busy){;}
busy =1
count+-+
while(busy){;}
busy = 0
while(busy){;}
busy =1
while(busy){;}
count++

® With a bad interleaving of threads, Thread 2 never gets
access to count.

27

Synchronization primitives

To implement mutual exclusion, we need help from the hardware
(and the operating system).

® Implementing mutual exclusion is the topic of next course.

Threading libraries provide synchronization primitives:
® A set of functions that allow synchronizing threads

Locks
Semaphores
Condition variables

28

Agenda

Locks

29

Locks

A lock provides a means to achieve mutual exclusion.

Specification
A lock is defined by a lock variable and two methods: lock() and
unlock().

30

Locks

A lock provides a means to achieve mutual exclusion.

Specification
A lock is defined by a lock variable and two methods: lock() and
unlock().

® A lock can be free or held

¢ |ock(): If the lock is free, the calling thread acquires the lock
and enters the CS. Otherwise the thread is blocked until the
lock becomes free.

¢ unlock(): Releases the lock. It has to be called by the thread
currently holding the lock.

® At any time, at most one thread can hold the lock.

30

Locks: Analogy

| lock

shared data

synchronized
doors

l ——unlock

31

Locks: Analogy

— —
\/é/,/ lock
| [
\ synchronized
Q doors
shared data

l _—unlock

® Calling lock, a thread enters
a waiting room

® A single thread can be in
the CS room (hosting the
shared data)
® When the thread in the CS
room calls unlock, it leaves
the CS room, and lets one
thread from the waiting
room enter (opens the doors
of the CS room)
The doors of the CS room
are initially opened.

31

Programming with locks

All critical data should be protected by a lock!

® Critical = accessed by more than one thread, at least one
write

® |t is the responsibility of the application writer to correctly use
locks

® Exception is initialization, before data is exposed to other
threads

32

Pthread locks: Mutexes

mutex: variable of type pthread mutex_t

pthread mutex_init(&mutex, ...): initialize the mutex

The macro PTHREAD _MUTEX_INITIALIZER can be used to
initialize a mutex allocated statically with the default options

pthread mutex _destroy(&mutex): destroy the mutex

pthread mutex_lock(&mutex)
pthread mutex unlock (&mutex)

pthread mutex_trylock(&mutex): is equivalent to lock(),
except that if the mutex is held, it returns immediately with
an error code

33

Pthread locks: Example

#include <pthread.h>

int count=0;
pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

void* thread_routine(void *arg){

VAT ¥
pthread_mutex_lock(&count_mutex) ;
count++;
pthread_mutex_unlock(&count_mutex) ;

/*x ... %/

34

Pthread locks attributes

man pthread mutex_lock

Only one attribute is supported by Linux locks:

® type
FAST: Deadlock on relock!
RECURSIVE: Allows relocking. A lock count is implemented (as
many lock() as unlock() calls required).
ERRORCHECK: Error returned on relock.
DEFAULT: Usually maps to NORMAL.

A thread calls lock() on a lock it already locked.

35

Agenda

Semaphores

36

Semaphores

® | ocks ensure mutual exclusion.

® A semaphore is another mechanism that allows controlling
access to shared variables but is more powerful than a lock.

® Semaphores were proposed by Dijkstra in 1968

37

Semaphores

A semaphore is initialized with an integer value N and can be
manipulated with two operations P and V.

About the interface
® P stands for Proberen (Dutch) — try

e \/ stands for Verhogen (Dutch) — increment

POSIX interface

® P — int sem wait(sem_t *s)
® V — int sem post(sem_t *s)
Other interfaces call it sem_signal()

38

Semaphores

When a tread calls sem_wait():

N=N-1;
if(N<O0)
Calling thread is blocked

When a tread calls sem_post():

N =N +1;
if(N <=0)
One blocked thread is unblocked

About the value of N:

39

Semaphores

When a tread calls sem_wait():

N=N-1;
if(N <0)
Calling thread is blocked

When a tread calls sem_post():

N =N +1;
if(N <=0)
One blocked thread is unblocked

About the value of N:

® If N >0, N is the capacity of the semaphore
e if N <0, Nisthe number of blocked threads

» Warning: The programer cannot read the value of the
semaphore

39

Mutual exclusion with semaphores

40

Mutual exclusion with semaphores

® |nitializing a semaphore with value N can be seen as providing
it with N tokens
® To implement critical sections, a semaphore should be
initialized with N =1
Warning: A semaphore with N =1 and a lock are not
equivalent

Example

#include <semaphore.h>

int count=0;
sem_t count_mutex;

sem_init (&count_mutex, 0, 1);
/x ... */

sem_wait (&count_mutex) ;
count++;

sem_post (&count_mutex) ;

40

Agenda

The Producer-Consumer Problem

41

Specification of the problem

Recall

put
— get
buffer

Specification
e A buffer of fixed size

® Producer threads put items into the buffer. The put operation
blocks if the buffer is full

® Consumer threads get items from the buffer. The get
operation blocks if the buffer is empty

42

Producer-Consumer

void producer (void *ignored) {
for (5;) {

/* produce an item and put in
nextProduced */

while (count == BUFFER_SIZE) {
/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;
count++;

void consumer (void *ignored) {

[

for (5;) {

while (count == 0) {
/* Do nothing */
}
nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in
nextConsumed */

-

43

Producer-Consumer

void producer (void *ignored) {
for (5;5) {
/* produce an item and put in
nextProduced */

while (count == BUFFER_SIZE) {
/* Do nothing */

}

buffer [in] = nextProduced;

in = (in + 1) 7 BUFFER_SIZE;
count++;

o

void consumer (void *ignored) {
for (5;) {

3
e

}

while (count == 0) {
/* Do nothing */
}
nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;
count--;

/* consume the item in
nextConsumed */

Not correct: shared data are not protected

® count can be accessed by the prod. and the cons.

e With multiple prod./cons., concurrent accesses to in, out, buffer

43

Producer-Consumer with Locks

mutex_t mutex = MUTEX_INITIALIZER;

void consumer (void *ignored) {
for (;) {
mutex_lock (&mutex);
while (count == 0) {

void producer (void *ignored) {
for (55) {
/* produce an item and put in
nextProduced */
mutex_ lock (Amutex) sched yield (); // Release CPU
while (count == BUFFER_SIZE) {

}
hed_yield ; Rel CPU
sched-yie O3 // Release nextConsumed = buffer[out];
3 out = (out + 1) % BUFFER_SIZE;
count--;

tex_unlock (&mutex);
buffer [in] = nextProduced; mutexunlock (gmutex)

in = (in + 1) % BUFFER_SIZE;
count++;
mutex_unlock (&mutex); }

/* consume the item in
nextConsumed */

L

Producer-Consumer with Locks

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (53) {
/* produce an item and put in
nextProduced */

mutex_lock (&mutex);
while (count == BUFFER_SIZE) {

sched yield (); // Release CPU

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

}

void consumer (void *ignored) {
for (5;) {
mutex_lock (&mutex);
while (count == 0) {

sched_yield (); // Release CPU

}

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

/* consume the item in
nextConsumed */

}

L

3
]

Not correct: If a thread enters a while loop, all threads are blocked

forever (deadlock)

¢ yield() does not release the lock

Producer-Consumer with Locks

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (55) {
/* produce an item and put in
nextProduced */

mutex_lock (&mutex);

while (count == BUFFER_SIZE) {

mutex_unlock (&mutex) ;
sched_yield ();
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

L

void consumer (void *ignored) {
for (;) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
sched_yield ();
mutex_lock (&mutex);

}

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

/* consume the item in
nextConsumed */

4

43

Producer-Consumer with Locks

mutex_t mutex = MUTEX_INITIALIZER;

void producer (void *ignored) {
for (5;) {
/* produce an item and put in
nextProduced */

mutex_lock (&mutex);

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
sched_yield Q;
mutex_lock (&mutex);

}

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

mutex_unlock (&mutex);

4

void consumer (void *ignored) {
for (535) {
mutex_lock (&mutex);
while (count == 0) {
mutex_unlock (&mutex);
sched_yield ();
mutex_lock (&mutex);

}

nextConsumed = buffer[out];
out = (out + 1) ¥ BUFFER_SIZE;
count--;

mutex_unlock (&mutex);

/* consume the item in
nextConsumed */

[

Correct ... but busy waiting

®* We don’t want busy waiting

43

About Busy Waiting

Busy waiting
Waiting for some condition to become true by repeatedly checking
(spinning) the value of some variable.

Why is it bad?

® Waste of CPU cycles
Use CPU cycles to check the value of a variable while there is
no evidence that this value has changed.
Follows from previous comment: Using sleep is still busy
waiting.
® On a single processor: Wasted cycles could have been used by
other threads.
® On a multi-processor: Repeatedly reading a variable that is
used by other threads can slow down these threads.
In specific cases, with a careful design, busy waiting can be
efficient.
44

Cooperation

Cooperation = Synchronization + Communication

® Synchronization: Imposing an order on the execution of
instructions

e Communication: Exchanging information between threads

Semaphores allow cooperation between threads

45

Producer-Consumer with semaphores

® Initialize fullCount to 0 (block consumer on empty buffer)
¢ Initialize emptyCount to N (block producer when buffer full)

void producer (void *ignored) {
for (5;) {
/* produce an item and put in
nextProduced */

sem_wait (&emptyCount) ;
buffer [in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

sem_post (&fullCount)

-

void consumer (void *ignored) {
for (5;) {
sem_wait (&fullCount) ;

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
sem_post (&emptyCount) ;

/* consume the item in
nextConsumed */

q4e

46

Producer-Consumer with semaphores

® Initialize fullCount to 0 (block consumer on empty buffer)
¢ Initialize emptyCount to N (block producer when buffer full)

¢ An additional semaphore (initialized to 1) should be used for
mutual exclusion (a lock could be used instead)

void producer (void *ignored) { void consumer (void *ignored) {
for (5;5) { for (5;) {
/* produce an item and put in sem_wait (&fullCount) ;
nextProduced */ sem_wait (&mutex)
nextConsumed = buffer[out];
sem_wait (&emptyCount) ; out = (out + 1) % BUFFER_SIZE;
sem_wait (&mutex)
buffer [in] = nextProduced; sem_post (&mutex)
in = (in + 1) % BUFFER_SIZE; sem_post (kemptyCount) ;
sem_post (&mutex) /* consume the item in
sem_post (&fullCount) nextConsumed */
} }
+ +

Comments on semaphores

® Semaphores allow elegant solutions to some problems
(producer-consumer, reader-writer)

® However they are quite error prone:
If you call wait instead of post, you'll have a deadlock
If you forget to protect parts of your code, you might violate

mutual exclusion
You have “tokens” of different types, which may be hard to

reason about

This is why other constructs have been proposed

47

Agenda

Condition Variables

438

Condition variables (pthreads)

A condition variable is a special shared variable.

® |t allows a thread to explicitly put itself to wait.
The condition variable can be seen as a container of waiting

threads.
As such, this variable does not have a value.

® |t is used together with a mutex:
When a thread puts itself to wait, the corresponding mutex is
released.

e |t is often associated to a logical condition (reason for this
name)

49

Condition variables (pthreads)

Interface

® cond: variable of type pthread cond_t

® pthread _cond_init(&cond, ...): initialize the condition

The macro PTHREAD _COND_INITIALIZER can be used to
initialize a condition variable allocated statically with the
default options

® void pthread cond wait(&cond, &mutex): atomically
unlock mutex and put the thread to wait on cond.

® void pthread cond signal(&cond) and
pthread_cond_broadcast (&cond): Wake one/all the
threads waiting on cond.

Condition variable: Analogy

RV

| lock

®
Q)

.

O

shared data

synchronized
doors

l / g —unlock

51

Condition variable: Analogy

O

EYS

O

—

O
Q.I

| lock

—signal

A
i

synchronized /

O

shared data

wait

doors

unlock

51

On the semantic of the operations

e Calling wait () releases the lock similarly to unlock ().

® When a thread is woken up by a call to signal() (or
broadcast ()), it is guaranteed that at the time it returns
from wait (), it owns the corresponding lock again.

However, it has to compete with other threads to acquire that
lock before returning from wait ().

® On a call to signal(), any of the waiting threads might be
the one that is woken up.

¢ Calling functions signal() and broadcast() does not
require owning the lock.
However in most cases the lock should be held for the
application logic to be correct.

52

Producer-Consumer with condition variables

mutex t mutex = MUTEX_INITIALIZER;
cond_t nonempty = COND_INITIALIZER;
cond_t nonfull = COND_INITIALIZER;

void producer (void *ignored) {
for (5;) {
/* produce an item and
put in nextProduced */

mutex_lock (&mutex);
while (count == BUFFER_SIZE)
cond_wait (&nonfull, &mutex);

buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;

cond_signal (&nonempty);
mutex_unlock (&mutex);

o

void consumer (void *ignored) {
for (;) {
mutex_lock (&mutex);
while (count == 0)
cond_wait (&nonempty, &mutex)

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;

cond_signal (&nonfull);
mutex_unlock (&mutex);

/* consume the item
in nextConsumed */

4

Beware: this solution does not warrant First Come First Served!

53

More on condition variables

Why must cond_wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

54

More on condition variables

Why must cond_wait both release mutex and sleep? Why not
separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock (&mutex);
cond_wait (&nonfull);
mutex_lock (&mutex);

}

A thread could end up stuck waiting because of a bad interleaving
> A condition variable has no associated state

PRODUCER CONSUMER

while (count == BUFFER_SIZE){
mutex_unlock (&mutex);

mutex_lock (&mutex);

count--;
cond_signal (&nonfull);
cond_wait (&nonfull);

}

Agenda

Monitors

55

Monitors

® A monitor is a synchronization construct

® |t provides synchronization mechanisms similar to mutex +
condition variables. (Some people call both “monitors™)

Definition
® A monitor is an object/module with a set of methods.
® Each method is executed in mutual exclusion

e Condition variables (or simply “conditions’) are defined with
the same semantic as defined previously

56

Comments on monitors

Proposed by Brinch Hansen (1973) and Hoare (1974)

Possibly less error prone than raw mutexes

Basic synchronization mechanism in Java

Different flavors depending on the semantic of signal:
> Hoare-style: The signaled thread get immediately access to the
monitor. The signaling thread waits until the signaled threads
leaves the monitor.
> Mesa-style (java): The signaling thread stays in the monitor.

Semaphores can be implemented using monitors and monitors
can be implemented using semaphores

57

Agenda

Other synchronization problems

58

The Reader-Writer problem

Problem statement

e Several threads try to access the same shared data, some
reading, other writing.

® Either a single writer or multiple readers can access the shared
data at any time

Different flavors
® Priority to readers

® Priority to writers

59

The Dining Philosophers problem

Proposed by Dijkstra

Problem statement

5 philosophers spend their live alternatively thinking and eating.
They sit around a circular table. The table has a big plate of rice
but only 5 chopsticks, placed between each pair of philosophers.
When a philosopher wants to eat, he has to peak the chopsticks on
his left and on his right. Two philosophers can't use a chopstick at
the same time. How to ensure that no philosopher will starve?

Goals
® Avoid deadlocks: Each philosopher holds one chopstick

® Avoid starvation: Some philosophers never eat

60

	Thread Synchronization
	Goals of the lecture
	A Multi-Threaded Application
	Mutual Exclusion
	Locks
	Semaphores
	The Producer-Consumer Problem
	Condition Variables
	Monitors
	Other synchronization problems

