Operating Systems

Thread Synchronization: Implementation

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

The content of these lectures is inspired by:
® The lecture notes of Prof. André Schiper.
® The lecture notes of Prof. David Mazieres.

e QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:
® Modern Operating Systems by A. Tanenbaum
e QOperating System Concepts by A. Silberschatz et al.

Agenda

Reminder

Goals of the lecture

Mutual exclusion: legacy solutions
Atomic operations

Spinlocks

Sleeping locks

About priorities

Agenda

Reminder

Previous lecture

Concurrent programming requires thread synchronization.

The problem:

Threads executing on a shared-memory (multi-)processor is an
asynchronous system.

® A thread can be preempted at any time.

® Reading/writing a data in memory incurs unpredictable delays
(data in L1 cache vs page fault).

Previous lecture

Classical concurrent programming problems

® Mutual exclusion

® Producer-consumer

Concepts related to concurrent programming
e Critical section ® Deadlock
® Busy waiting

Synchronization primitives

® | ocks e Condition variables

® Semaphores

Agenda

Goals of the lecture

High-level goals

How to implement synchronization primitives?

Answering this question is important to:
® Better understand the semantic of the primitives
® |earn about the interactions with the OS
® | earn about the functioning of memory

® Understand the trade-offs between different solutions

Content of the lecture

Solutions to implement mutual exclusion

® Peterson’s algorithm
® Spinlocks

® Sleeping locks

Basic mechanisms used for synchronization

e Atomic operations (hardware)
¢ Futex (OS)

Agenda

Mutual exclusion: legacy solutions

10

A shared counter (remember ...)

Example seen during the lab

int count = O;

Thread 1: Thread 2:
for(i=0; i<10; i++){ for(i=0; i<10; i++){
count++; count++;
} }

What is the final value of count?

® A value between 2 and 20

11

Explanation (remember .. .)

Let's have a look at the (pseudo) assembly code for count++:

mov count, register
add $0x1, register
mov register, count

A possible interleave (for one iteration on each thread)
mov count, register
add $0x1, register
mov count, register
add $0x1, register
mov register, count
mov register, count

At the end, count=1 :-(

12

Implementation: First try (remember .. .)

Shared variables:

int count=0;

int busy=0;

Thread 1: Thread 2:
while(busy){;?} while(busy){;?}
busy=1; busy=1;
count++; count++;
busy=0; busy=0;

This solution violates both safety and liveness.

13

Critical sections

Thread 1: Thread 2:
Enter CS; Enter CS;
count++; count++;
Leave CS; Leave CS;

How to implement Enter CS and Leave CS?

14

Disabling interrupts

Description
Prevent a thread from being interrupted while it is in CS

e If a thread is not interrupted, it will (hopefully) execute the
CS atomically.

Problems with disabling interrupts

15

Disabling interrupts

Description
Prevent a thread from being interrupted while it is in CS

e If a thread is not interrupted, it will (hopefully) execute the
CS atomically.

Problems with disabling interrupts

® The solution is unsafe:

Enabling threads to disable interrupts requires allowing them
to run privileged operations. (trust ?)
Possible attack: disable interrupts and run forever.

® The solution is inefficient:
Disabling interrupts is a costly operation.

15

Disabling interrupts
Description
Prevent a thread from being interrupted while it is in CS

e If a thread is not interrupted, it will (hopefully) execute the
CS atomically.

Problems with disabling interrupts
® The solution is unsafe:

> Enabling threads to disable interrupts requires allowing them
to run privileged operations. (trust ?)
> Possible attack: disable interrupts and run forever.

® The solution is inefficient:
> Disabling interrupts is a costly operation.
In any case:
Disabling interrupts does not work on multi-processors!

15

Peterson’s algorithm

Presentation

® Mutual exclusion algorithm solely based on read and write
operations to a shared memory

® First correct solution for two threads by Dekker in 1966

® Peterson proposed a simpler solution in 1981

16

Peterson’s algorithm
Solution for 2 threads Ty and T:

Algorithm 1 Peterson’s algorithm for thread T;

Global Variables:
1. bool wants[2] = {false, false};
2: int not_turn; /* can be 0 or 1 */

3: enter_CS()

4: wants[i] = true;

5 not_turn = i;

6: while wants[1-i] == true and not_turn == i do
7 /* do nothing */

8: end while

(o]

. leave_CS()
10: wants[i] = false;

17

Peterson’s algorithm

A few comments:

e wants[i]: To declare that the thread T; wants to enter.
e not_turn: To arbitrate if the 2 threads want to enter.

® Line 6: "The other thread wants to access and not our turn,
so loop”.

18

Correctness of the algorithm

The algorithm is correct. How can it be shown?

e Difficult problem in the general case.

Mathematical Proof

® Reasoning about the properties of the algorithm using
classical methods (induction, contradiction, ...).
® Cannot be considered as reliable:

We show only the points that we thought about. What if we
overlooked a problem?
Still increases the confidence of the reader.

19

Correctness of the algorithm

Model checking

® Description (state space enumeration)

Represents the algorithms as a set of states and transitions.
Defines a property to be checked (2 threads in CS)
Enumerates all possible states to verify the property (here for 2
threads).

e Complex problem:

Combinatorial blow up of the state-space (polynomial in
number of threads)

20

Discussion about correctness

® Mutual exclusion: both threads in CS?

® Progress

® Bounded waiting

21

Discussion about correctness

® Mutual exclusion: both threads in CS?

» Would mean wants[0] == wants[1] == true,
so not_turn would have blocked one thread from CS

® Progress

® Bounded waiting

21

Discussion about correctness

® Mutual exclusion: both threads in CS?

» Would mean wants[0] == wants[1] == true,
so not_turn would have blocked one thread from CS

® Progress
> If T;_; doesn't want CS, wants[1-i] == false, so T; won't
loop
> If both threads try to enter, only one thread is the not_turn
thread

® Bounded waiting

21

Discussion about correctness

® Mutual exclusion: both threads in CS?

» Would mean wants[0] == wants[1] == true,
so not_turn would have blocked one thread from CS

® Progress
> If T;_; doesn't want CS, wants[1-i] == false, so T; won't
loop
> If both threads try to enter, only one thread is the not_turn
thread

® Bounded waiting

> If T; wants to lock and T;_; tries to re-enter, T;_; will set
not_turn = 1 - i, allowing T; in.

21

Peterson’s algorithm — Limits

® Given solution works for 2 threads

® Can be generalized to n threads but n must be known in
advance

® Note that the current version assumes that the memory is
sequentially consistent. Most processors don't provide
sequential consistency.

Stay tuned ...

22

Summary

® Disabling interrupts
> Does not work on multi-core systems.

® Peterson’s algorithm

> Requires to know the number of participants in advance
> Uses only load and store operations

To implement a general lock, we need help from the hardware:

® We need atomic operations.

23

Agenda

Atomic operations

24

Atomic operations

Processors provide means to execute read-modify-write operations
atomically on a memory location

® Typically applies to at most 8-bytes-long variables

25

Atomic operations

Processors provide means to execute read-modify-write operations
atomically on a memory location

® Typically applies to at most 8-bytes-long variables

Common atomic operations

® test_and_set(type *ptr): sets *ptr to 1 and returns its previous
value

e fetch_and add(type *ptr, type val): adds val to *ptr and
returns its previous value

® compare_and_swap(type *ptr, type oldval, type newval): if
xptr == oldval, set *ptr to newval and returns true; returns
false otherwise

25

A shared counter

With atomic operations

int count = O;
Thread 1:

for(i=0; i<10; i++){
fetch_and_add(&count,1);
}

Thread 2:

for(i=0; i<10; i++){

}

fetch_and_add(&count,1);

26

Agenda

Spinlocks

27

Recall: lock using busy waiting (attempt)

struct{
int flag;
} lock_t;

void init(lock_t L) {
L—>flag = 0;
}

void lock(lock_t *L) {
while(L—> flag == 1){;}

L—>flag = 1;

}

void unlock(lock_t *L) {
L—>flag = 0;

}

28

Recall: lock using busy waiting (attempt)

struct{
int flag;
} lock_t;

void init(lock_t L) {
L—>flag = 0;
}

void lock(lock_t *L) {
while(L—> flag == 1){;}

L—>flag = 1;

}

void unlock(lock_t *L) {
L—>flag = 0;

}

® Multiple threads can be in CS at the same time!

28

Spinlock with test and set()

struct{
int flag;
} lock_t;

void init(lock_t L) {
L—>flag = 0;
}

void lock(lock_t xL) {
while (test_and_set(&L—>flag) == 1){;}

}

void unlock(lock_t L) {
L—>flag = 0;

}

29

Spinlock with test and set()

struct{
int flag;
} lock_t;

void init(lock_t xL) {
L—>flag = 0;
}

void lock(lock_t *L) {
while (test_and_set(&L—>flag) == 1){;}

}
void unlock(lock_t L) {
L—>flag = 0;
}
Beware:

® The solution is safe and ensures progress
® The solution does not warrant bounded waiting

29

Spinlock with compare_and_swap()

struct{
int flag;
} lock_t;

void init(lock_t xL) {
L—>flag = 0;
}

void lock(lock_t *L) {
while (!compare_and_swap(&lock—>flag,0,1)){;}

}
void unlock(lock_t L) {
L—>flag = 0;
}
Beware:

® The solution is safe and ensures progress
® The solution does not warrant bounded waiting

30

About spinlocks

® As the name suggests, it implies busy waiting:

Busy waiting not only wastes CPU cycles, it interferes with the
execution of other threads.
And what about energy consumption?

® There are more complex algorithms that provide bounded
waiting

® Spinning may be acceptable when the number of threads is
not more than the number of cores

Spinlocks might be used when the critical section is short

31

Agenda

Sleeping locks

32

Sleeping instead of spinning

The problem
® Spinning threads might delay the thread currently executing a
critical section

e Could we use a yield() primitive (explicitly tell the OS that
a thread wants to give up the CPU)?

33

Sleeping instead of spinning

The problem

® Spinning threads might delay the thread currently executing a
critical section

e Could we use a yield() primitive (explicitly tell the OS that
a thread wants to give up the CPU)?

Simply moves the caller from the running state to the ready
state

Imagine 100 threads competing for the same lock ... still not
doing anything useful 99% of the time

We need to remove threads from the ready list.

® This is what we call sleeping.

® The thread is not eligible anymore to be executed on the CPU.

33

Sleeping locks (mutexes): High-level description

lock()

If the mutex is locked, remove the calling thread from the “ready
list” of the kernel (set of threads that are ready to execute), and
insert it into the list of threads waiting on the mutex.

unlock()

If the list of waiting threads is not empty, remove one thread from
the list and put it back into the ready list.

34

Sleeping locks: Design

Discussion on performance
® Manipulating the ready list implies a system call (interaction
with the scheduler).

¢ We should limit the number of system calls (costly)

® The common case is: There is no contention on the lock (a
single thread tries to access the CS)
> We should seek for a solution that is optimized for this case.

35

User-level mutexes: First try
Assuming a sleep() and a wakeup() system calls are available

struct {

int busy; /* true if locked x/

thread_list_t *waiters; /* threads waiting for lock */
} mutex;

void lock (mutex xmtx) {
while (test_and_set (&mtx—>busy)) {
atomic_put (&mtx—>waiters, self); /* list protected by a lock */
sleep ();

}

void unlock (mutex *mtx) {
mtx—>busy = 0;
wakeup (atomic_get (&mtx—>waiters));

36

User-level mutexes: First try
Assuming a sleep() and a wakeup() system calls are available

struct {

int busy; /* true if locked x/

thread_list_t *waiters; /* threads waiting for lock */
} mutex;

void lock (mutex xmtx) {

while (test_and_set (&mtx—>busy)) { (1)
atomic_put (&mtx—>waiters, self); (2)
sleep ();

}

}

void unlock (mutex *mtx) {
mtx—>busy = 0;
wakeup (atomic_get (&mtx—>waiters));

}

® Problem: If unlock() is called between (1) and (2), a thread
could sleep forever.

> Testing busy and putting the thread to sleep is not atomic.
36

Futex

Linux provides the futex system call to solve the problem.

® Ask to sleep if the value of a variable hasn’t changed

Interface:
¢ void futex(void* addrl, FUTEX_WAIT, int val ...)
Calling thread is suspended (“goes to sleep”) if *addrl == val

¢ void futex(void* addrl, FUTEX_WAKE, int val)

Wakes up at most val threads waiting on addrl
Typical usage: val=1 or val=INT_MAX (broadcast)

See “Futexes are tricky” by U. Drepper for a nice discussion on
futexes

37

User-level mutexes: First try with futexes

struct {
int busy; /1 if busyx/
} mutex;

void lock (mutex *mtx) {
while (test_and_set (&mtx—>busy))
futex(&mtx—>busy, FUTEX_WAIT, 1);
}

void unlock (mutex *mtx) {

mtx—>busy = 0;

futex(&mtx—>busy, FUTEX_WAKE, 1);
}

38

User-level mutexes: First try with futexes

struct {
int busy; /1 if busyx/
} mutex;

void lock (mutex *mtx) {
while (test_and_set (&mtx—>busy))
futex(&mtx—>busy, FUTEX_WAIT, 1);

}

void unlock (mutex *mtx) {
mtx—>busy = 0;
futex(&mtx—>busy, FUTEX_WAKE, 1);

This is correct but there is opportunity for improvement

e unlock function makes a call to futex (system call) even when
there is no thread waiting.

38

User-level mutexes: Second try with futexes
Intuition: counting the number of waiting thhreads

struct {
int busy; /* Counts number of contending threads %/
} mutex;

void lock (mutex *mtx) {
int ¢
while ((c = fetch_and_add(mtx—>busy, 1)) != 0)
futex(&mtx—>busy, FUTEX_WAIT, c+1);

}

void unlock (mutex *mtx) {
if (fetch_and_add(mtx—>busy, —1) 1= 1) {
mtx—>busy = 0;
futex(&mtx—>busy, FUTEX_-WAKE, INT_MAX);

39

User-level mutexes: Second try with futexes
Intuition: counting the number of waiting thhreads

struct {
int busy; /* Counts number of contending threads %/
} mutex;

void lock (mutex *mtx) {
int ¢
while ((c = fetch_and_add(mtx—>busy, 1)) != 0)
futex(&mtx—>busy, FUTEX_WAIT, c+1);
}

void unlock (mutex *mtx) {
if (fetch_and_add(mtx—>busy, —1) 1= 1) {
mtx—>busy = 0;
futex(&mtx—>busy, FUTEX_-WAKE, INT_MAX);

}

® Wrong interleaving of calls to FAA and FUTEX_WAIT could makes
FUTEX_WAIT calls fail (busy != nb of waiting threads).

> Wake up all threads on unlock() to reset busy — very costly

User-level mutexes: good solution with futexes

struct {
// 3—state variable: 0=unlocked, 1=locked no waiters, 2=Ilocked-+waiters
int state;

} mutex;

void lock (mutex *mtx) {
if (!compare_and_swap(&mtx—>state, 0, 1)) {
int ¢ = swap(&mtx—>state, 2); /*atomically write 2, return old valuex/
while (¢ '=0) {
futex (&mtx—>state, FUTEX_WAIT, 2);
c= swap (&mtx—>state, 2);

}
}
}
void unlock (mutex *mtx) {
if (fetch_and_add(mtx—>state, —1) I=1) { /xie, == 2 %/
mtx—>state = 0;
futex (&mtx—>state, FUTEX_WAKE, 1);
}
}

40

User-level mutexes: good solution with futexes

Comments

® The 3-state variable allows waking up only when needed
without any risk of counter overflow.

® The 3-state variable implies that we use CAS instead of FAA

® The SWAP to mtx->state to 2 is announcing that we are
waiting

® When c==0 after SWAP, it means that we grabbed the lock
mtx->state==0 means that the lock is not held

® mtx->state==2 means that there might be a thread waiting
When a thread is woken up from FUTEX_WAIT, it cannot know
if it is the last waiting thread
If the lock is released between the call to CAS and the call to
SWAP, it might be the case that no thread will be waiting

41

User-level mutexes: Performance

Performance without contention
® |ock: 1 atomic operation + 0 system call

® unlock: 1 atomic operation + 0 system call

Hybrid approach: two-phase lock

® |f the lock is about to be released, spinning can be more
efficient than sleeping.

® |dea: Spin for a few iterations before sleeping

® Corresponds to the current implementation of pthread
mutexes.

42

Implementation of futexes

Required for correctness:
e On FUTEX_WAIT, checking the value and putting the thread
to sleep should be done in an atomic step.
> Otherwise we have the same problem as in Slide 36.
® To ensure this, a lock is used inside the kernel.

> FUTEX_WAIT and FUTEX_WAKE start by grabbing that lock.

How to implement the low-level lock?

43

Implementation of futexes

Required for correctness:
e On FUTEX_WAIT, checking the value and putting the thread
to sleep should be done in an atomic step.
> Otherwise we have the same problem as in Slide 36.
® To ensure this, a lock is used inside the kernel.

> FUTEX_WAIT and FUTEX_WAKE start by grabbing that lock.

How to implement the low-level lock?

® The CS is very short (put/get in a list)

® A spinlock can be used !

43

Agenda

About priorities

44

Problem with priorities: Priority inversion

Processes/threads in a system might have different priorities:

® |f a thread with a high priority is ready to execute, it should

get the CPU instead of threads with lower priority

Priority inversion

1.

2 threads, 1 CPU: priority(T1) > priority(T2)

2. Ty is interrupted; T starts executing and grabs a lock.
3.
4. Ty wants to grad the lock: What happens next?

T; resumes and gets the CPU again.

45

Problem with priorities: Priority inversion

Processes/threads in a system might have different priorities:

® |f a thread with a high priority is ready to execute, it should
get the CPU instead of threads with lower priority

Priority inversion

1. 2 threads, 1 CPU: priority(T1) > priority(T2)
2. Ty is interrupted; T starts executing and grabs a lock.
3. T7 resumes and gets the CPU again.

4. Ty wants to grad the lock: What happens next?

> With a spinlock: deadlock — T spins forever
> With a sleeping lock: ok

45

Problem with priorities: Priority inversion

Processes/threads in a system might have different priorities:

® |f a thread with a high priority is ready to execute, it should

get the CPU instead of threads with lower priority

Priority inversion

1.

2 threads, 1 CPU: priority(T1) > priority(T2)

2. Ty is interrupted; T starts executing and grabs a lock.
3.
4. Ty wants to grad the lock: What happens next?

T; resumes and gets the CPU again.

With a spinlock: deadlock — T; spins forever
With a sleeping lock: ok

But if you add a third thread with priority(Ty) > priority(T3)
> priority(T2), even with a sleeping lock T; and T, might be
blocked forever (e.g., if T3 never tries to grab the lock, and so,
keeps the CPU forever)

45

Problem with priorities: Priority inversion

Definition
The problem is called Priority Inversion because the high priority
task is indirectly blocked by a low priority task.

e Search "Mars Pathfinder Mission (1997)" for an example

Solutions

® Priority Ceiling: Priority associated with the mutex is assigned

to the task grabbing the mutex
> Priority of the mutex should be equal to that of the task with
the highest priority accessing it.

® Priority Inheritance: The low-priority task holding the mutex
gets assigned the priority of the high-priority task contending
for that mutex.

46

Additional resources

To complement this lecture, read:

® QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

> Chapter 28: Locks

47

	
	Reminder
	Goals of the lecture
	Mutual exclusion: legacy solutions
	Atomic operations
	Spinlocks
	Sleeping locks
	About priorities

