Operating Systems
Thread Synchronization: Advanced Topics

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

The content of these lectures is inspired by:
® The lecture notes of Prof. André Schiper.
® The lecture notes of Prof. David Maziéres.
® QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

e A Primer on Memory Consistency and Cache Coherence by D.
Sorin, M. Hill and D. Wood.

Included in this lecture

Several concepts related to concurrent programming

® Performance
> Amdahl’s law

® Characteristics of shared memory

» Coherence
» Consistency (SC, TSO)

e Correctness of algorithms

> Data race / race condition
> Avoiding deadlocks

Agenda

Efficiency of concurrent code
Consistency and Coherence
Memory models

Data Races

Other topics

Agenda

Efficiency of concurrent code

First a reminder

Threads have two main purposes:
¢ Overlapping computation and |/Os

¢ Taking advantage of multicore (multi-)processors for
compute-intensive code

The performance improvement that can be expected from using
multiple threads is not infinite.

Amdahl’'s Law
Speedup of parallel code is limited by the sequential part of the
code:
p
T(n)=@A~p)- T()+ - T(1)

where:
® T(x) is the time it takes to complete the task on x CPUs

® pis the portion of time spent on parallel code in a sequential

execution
® nis the number of CPUs
Even with massive number of CPUs:

lim T(n)=(1-p)-T(1)

n—o00

Amdahl’s Law

Amdahl's Law

20.00 —
] ||
18.00
Parallel portion
16.00 50% —1
— 75%
14.00 — 0% ——
— 95%

12.00
=3
3
3 10.00 /
o - | ——
a —

8.00

6.00

4.00 —

L—1
L1
2.00
1
0.00

3
R I
§ & &

1024
2048
4096
8192

16384
32768
65536

Number of processors

Figure: Speedup as a function of the number of CPUs!

1“AmdahlsLaw” by Daniels220 at English Wikipedia

Efficient concurrent programs

Critical sections are pieces of code that are executed
sequentially!

Finding the right granularity for critical sections:

® Correctness always comes first!

® Try to reduce the size of the critical sections that are executed
most often

® Do not forget that lock/unlock operations also take time

Agenda

Consistency and Coherence

10

A modern multicore processor

< Interconnection Network >

| Memory Controller |

| 4
v |

Main Memory

11

A modern multicore processor with caches

' i 1 1
cache cache cache cache

! v 1 v 4 !
T& Interconnection Network)T

'

| Memory Controller ﬁ Shared Cache (LLC)

| 4
v |

Main Memory

A modern multicore processor with caches

Cache
® Goal: Reducing memory access latency
® Mandatory for good performance
® Stores a copy of the last accessed cache lines

® Multiple level of private cache + a larger shared cache

Network interconnect
® | egacy architectures based on a bus

¢ Some modern CPUs use a multi-dimensional network (mesh)

13

Memory system properties

Basic properties
® Each core read (load) and write (store) to a single shared
address space.

® Size of loads and stores is typically 1 to 8 bytes on 64-bit
systems.

® Cache blocks size is 64 bytes on common architectures (cache
line).

Questions
® How is correctness defined for such a system?

® How do caches impact correctness?

14

Memory system properties
Consistency (Memory Model)

® Defines correct shared memory behavior in terms of loads and
stores
> What value a Joad is allowed to return.

® Specifies the allowed behavior of multi-threaded programs
executing with shared memory
» Pb: multiple executions can be correct

® Defines ordering across memory addresses

15

Memory system properties

Consistency (Memory Model)
® Defines correct shared memory behavior in terms of loads and
stores
> What value a Joad is allowed to return.

® Specifies the allowed behavior of multi-threaded programs
executing with shared memory

» Pb: multiple executions can be correct

® Defines ordering across memory addresses

Coherence

® Ensures that load/store behavior remains consistent despite
caches

> The cache coherence protocol makes caches logically invisible
to the user.

® Deals with the case where multiple cores access the same
memory address.

15

Cache coherence
Sorin, Hill and Wood

Single-Writer, Multiple-Reader (SWMR) invariant

For any given memory location, at any given moment in time,
there is either a single core that may write it (and that may also
read it) (read-write epoch) or some number of cores that may read
it (read epoch).

Data-Value Invariant

The value of the memory location at the start of an epoch is the
same as the value of the memory location at the end of its last
read—write epoch.

Implementation

® Invalidate protocols (outside the scope of this course)

16

Agenda

Memory models

17

lllustrating the problem

o | C1
data = NEW;
flag = SET;

while(flag !'= SET){;}
d = data;

18

lllustrating the problem

Co ‘ C1

S1: Store data NEW;

S2: Store flag SET; | L1: Load rl1 = flag;
Bl: if (r1!=SET) goto L1;
L2: Load r2 = data;

Final value of r2?

18

lllustrating the problem

Co ‘ C1

S1: Store data NEW;

S2: Store flag SET; | L1: Load rl1 = flag;
Bl: if (r1!=SET) goto L1;
L2: Load r2 = data;

Final value of r2?

First guess:
® The obvious answer is r2 = NEW
® This assumes the hardware does not re-order load/store
operations.

18

[llustrating the problem

Co ‘ C1

S1: Store data NEW;

S2: Store flag SET; | L1: Load rl1 = flag;
Bl: if (r1!=SET) goto L1;
L2: Load r2 = data;

Final value of r2?

First guess:
® The obvious answer is r2 = NEW
® This assumes the hardware does not re-order load/store
operations.

In practice:
® \We cannot answer
® |t depends what re-ordering between operations the hardware
can do

18

Re-ordering memory accesses

A modern core might re-order memory accesses to different
addresses in different ways:
® Store-store reordering

» Non-FIFO write buffer
> S1 misses while S2 hits the local cache

® | oad-load reordering

» Qut-of-order cores (dynamic execution) = Executes
instructions in an order governed by the availability of input
data.

® |oad-store/store-load reordering
» Qut-of-order cores

Re-ordering is used to improve performance.

19

Re-ordering memory accesses

If Store-store or Load-load reordering is allowed, the answer to the
previous question can be r2 = NEW

The memory consistency model defines what behavior the
programmer can expect and what optimizations might be used in
hardware.

Note that with a single thread executing on one core, all these
re-orderings are fully safe.

Some consistency models:
® Sequential consistency

® Total store order

20

Sequential Consistency (SC)

Definition

The result of any execution is the same as if the operations of all
processors (cores) were executed in some sequential order, and the
operations of each individual processor (core) appear in this
sequence in the order specified by its program. — L. Lamport

This boils down to two requirements:
® All operations of a core appear in program order from memory
point of view
® All write operations appear atomic
A write is made visible to all cores at the same time

21

Sequential Consistency (SC)

Second op
Load | Store
Load X X
Store X X

First op

Table: SC ordering rules. (What ordering is enforced for requests issued
by one core)

With SC, the answer to previous question is r2 = NEW

Sequential Consistency (SC)

Second op

Load | Store
) Load X X
First op Store X X

Table: SC ordering rules. (What ordering is enforced for requests issued

by one core)

With SC, the answer to previous question is r2 = NEW

Problem

Some hardware optimizations do not work efficiently or are

complex to implement with SC

22

Total Store Order (TSO)

Definition
Same as SC except that:

® A load is allowed to return before an earlier store to a
different location.

® A core is allowed to read its own writes before their are made
visible to all cores.

TSO appears to be the memory model of AMD and Intel x86
architectures (no formal specification).

® |t is the consequence of introducing write buffers

23

Write Buffer

Each core has a write buffer where are stored pending write
operations. It prevents the core from stalling if the core does not
have immediate read/write access to a cache line.

® TSO formalizes the behavior observed when write buffers are
used

24

Write Buffer

Each core has a write buffer where are stored pending write
operations. It prevents the core from stalling if the core does not
have immediate read/write access to a cache line.

® TSO formalizes the behavior observed when write buffers are

used

Second op

Load | Store

First op Load X X
Store | WB X

Table: TSO ordering rules (What ordering is enforced for requests issued

by one core)

WB = No ordering guaranty except that most recent value should
be returned from write buffer if both operations are to the same

address.

24

Impact of TSO

co | C1

S1: Store data NEW;

S2: Store flag = SET; | L1: Load r1 = flag;
B1: if(r1!=SET) goto L1;
L2: Load r2 = data;

Final value of r2?

25

Impact of TSO

co | C1

S1: Store data NEW;

S2: Store flag = SET; | L1: Load r1 = flag;
B1: if(r1!=SET) goto L1;
L2: Load r2 = data;

Final value of r2?

r2 = NEW
TSO behaves like SC for most programs

® You can assume SC except if you start designing some low
level synchronization

Some architectures (ex: ARM) have a weaker memory model
(no ordering enforced for store operations)

25

TSO versus SC
Core CO Core C1
/* x=0, y=0 initiallyx*/
S1: Store x NEW; | S2: Store y NEW;
L1: Load rl = y; L2: Load r2 = x;

Is the final result r1=0, r2=0 possible?

® With SC?
e With TSO?

26

TSO versus SC
Core CO Core C1
/* x=0, y=0 initiallyx*/
S1: Store x NEW; | 8S2: Store y = NEW;
L1: Load rl = y; L2: Load r2 = x;

Is the final result r1=0, r2=0 possible?

® With SC? No
e With TSO?

26

TSO versus SC
Core CO Core C1
/* x=0, y=0 initiallyx*/
S1: Store x NEW; | 8S2: Store y = NEW;
L1: Load rl = y; L2: Load r2 = x;

Is the final result r1=0, r2=0 possible?

e With SC? No
e With TSO? Yes

26

TSO versus SC
Core CO Core C1
/* x=0, y=0 initiallyx*/
S1: Store x NEW; | 8S2: Store y = NEW;
L1: Load rl = y; L2: Load r2 = x;

Is the final result r1=0, r2=0 possible?

e With SC? No
e With TSO? Yes

Fence
A memory fence (also called memory barrier) can be used to force
the hardware to follow program order.

S1: Store x = NEW; | S2: Store y = NEW;
FENCE FENCE
L1: Load rl = y; L2: Load r2 = x;

26

Another Example (1)

volatile int flagl = 0;
volatile int flag2 = 0;

void pl(void xignored) {
flagl = 1;
if (!flag2) { critical_section_.1 (); }

void p2 (void *ignored) {
flag2 = 1;
if (!flagl) { critical_section.2 (); }

int main() {

tid id = thread_create(pl, NULL);
p2();
thread_join (id);

}

What does volatile mean?

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (1)

volatile int flagl = 0;
volatile int flag2 = 0;

void pl(void xignored) {

flagl = 1;
if (!flag2) { critical_section_.1 (); }

void p2 (void *ignored) {

flag2 = 1;
if (!flagl) { critical_section.2 (); }

int main() {

}

tid id = thread_create(pl, NULL);
p2();
thread_join (id);

What does volatile mean?

® No compiler optimization
can be applied to this
variable 2

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (1)

What does volatile mean?
volatile int flagl = 0; ® No compiler optimization
volatile int flag2 = 0;

can be applied to this

H a
void pl(void xignored) { variable
flagl = 1;
if (1flag2) { critical section.1 (); } Can both critical sections
run?
void p2 (void *ignored) { e with SC?
flag2 = 1; PR 2
if (!flagl) { critical_section.2 (); } with TS0
int main() {
tid id = thread_create(pl, NULL);
p2(); ?The content of a volatile
thread_join (id); variable can change by means
} unknown to the compiler — use with
care

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (1)

What does volatile mean?
volatile int flagl = 0; ® No compiler optimization
volatile int flag2 = 0;

can be applied to this

H a
void pl(void xignored) { variable
flagl = 1;
if (1flag2) { critical section.1 (); } Can both critical sections
run?
void p2 (void *ignored) { ® with SC? No
flag2 = 1; PR 2
if (!flagl) { critical_section.2 (); } with TS0
int main() {
tid id = thread_create(pl, NULL);
p2(); ?The content of a volatile
thread_join (id); variable can change by means
} unknown to the compiler — use with
care

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (1)

What does volatile mean?
volatile int flagl = 0; ® No compiler optimization
volatile int flag2 = 0;

can be applied to this

H a
void pl(void xignored) { variable
flagl = 1;
if (1flag2) { critical section.1 (); } Can both critical sections
run?
void p2 (void *ignored) { ® with SC? No
flag2 = 1; PR 2
if (!flagl) { critical_section.2 (); } N (o
int main() {
tid id = thread_create(pl, NULL);
p2(); ?The content of a volatile
thread_join (id); variable can change by means
} unknown to the compiler — use with
care

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (1)

What does volatile mean?
volatile int flagl = 0;

® No compiler optimization
volatile int flag2 = 0;

can be applied to this

H a
void pl(void xignored) { variable
flagl = 1;
if (1flag2) { critical section.1 (); } Can both critical sections
run?
void p2 (void *ignored) { ® with SC? No
flag2 = 1; PR 2
if (!flagl) { critical_section.2 (); } N (o
® Peterson’s algorithm
04 doesn't work as is with
int main
TSO!
tid id = thread_create(pl, NULL); 50
p2(); “The content of a volatile
thread_join (id); variable can change by means
} unknown to the compiler — use with

care

27

https://www.kernel.org/doc/html/latest/process/volatile-considered-harmful.html

Another Example (2)

volatile int data = 0;
volatile int ready = 0;

void pl (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void xignored) {
while (!ready)

use (data);

int main () { ... }

Can use be called with
value 07

e with SC?

e with TSO?

28

Another Example (2)

volatile int data = 0;
volatile int ready = 0;

void pl (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void *ignored) {
while (!ready)

use (data);

int main () { ... }

Can use be called with
value 07

e with SC? No

e with TSO?

28

Another Example (2)

volatile int data = 0;
volatile int ready = 0;

void pl (void *ignored) {
data = 2000;
ready = 1;

}

void p2 (void *ignored) {
while (!ready)

use (data);

int main () { ... }

Can use be called with
value 07

e with SC? No

e with TSO? No

28

Another Example (3)

volatile int flagl=0;
volatile int flag2=0;

int pl (void){
int f, g;
flagl = 1;
f = flagl;
= flag2; Can both return 27
return 2xf + g;

t e with SC?

int p2 (void){ o with TSO?
int f, g; '
flag2 = 1;
f = flag2;
g = flagl;
return 2xf + g;

}
int main () { ... }

29

Another Example (3)

volatile int flagl=0;
volatile int flag2=0;

int pl (void){
int f, g;
flagl = 1;
f = flagl;
= flag2; Can both return 27
return 2xf + g;

t e with SC? No

int p2 (void){ o with TSO?
int f, g; '
flag2 = 1;
f = flag2;
g = flagl;
return 2xf + g;

}
int main () { ... }

29

Another Example (3)

volatile int flagl=0;
volatile int flag2=0;

int pl (void){
int f, g;
flagl = 1;
f = flagl;
= flag2; Can both return 27
return 2xf + g;

t e with SC? No

int p2 (void){ e with TSO? Yes
int f, g; '
flag2 = 1;
f = flag2;
g = flagl;
return 2xf + g;

}
int main () { ... }

29

Agenda

Data Races

30

Data races and race conditions

Data race
A data race is when two threads access the same memory location,

at least one of these accesses is a write, and there is no
synchronization preventing the two accesses from occurring
concurrently.

Race condition
A race condition is a flaw in a program that occurs because of the

timing or ordering of some events.

31

Data races and race conditions

Data race

A data race is when two threads access the same memory location,
at least one of these accesses is a write, and there is no
synchronization preventing the two accesses from occurring
concurrently.

Race condition
A race condition is a flaw in a program that occurs because of the
timing or ordering of some events.

® A data race may lead to a race condition but not always
® A race condition might be due to a data race but not always

® Peterson’s synchronization algorithm is an example where
data races do not lead to race conditions

31

Data

races and race conditions

Transfer_Money (amount, account_from, account_to){

if (account_from.balance < amount){
return FAILED;
}

account_to.balance += amount;

account_from.balance -= amount;

return SUCCESS;

® Data race?

® Race condition?

32

Data races and race conditions

Transfer_Money (amount, account_from, account_to){

if (account_from.balance < amount){
return FAILED;
}

account_to.balance += amount;

account_from.balance -= amount;

return SUCCESS;

® Data race? Yes (updates of balance)

¢ Race condition? Yes (balance can get below 0)

32

Data races and race conditions: New try

Transfer_Money (amount, account_from, account_to){
mutexl.lock();
val=account_from.balance;
mutexl.unlock();
if(val < amount){

return FAILED;
}
mutex2.lock();
account_to.balance += amount;
mutex2.unlock();
mutexl.lock();
account_from.balance -= amount;
mutexl.unlock();
return SUCCESS;

® Data race?

® Race condition?

32

Data races and race conditions: New try

Transfer_Money (amount, account_from, account_to){
mutexl.lock();
val=account_from.balance;
mutexl.unlock();
if (val < amount){

return FAILED;
}
mutex2.lock();
account_to.balance += amount;
mutex2.unlock();
mutexl.lock();
account_from.balance -= amount;
mutexl.unlock();
return SUCCESS;

e Data race? No

¢ Race condition? Yes (balance can get below 0)

32

Agenda

Other topics

33

Deadlocks (with condition variables)

mutex_t ml, m2;
cond_t cl;

void pl (void xignored) {
lock (m1); lock (m2);
while(!ready){wait(cl,m2);}
/* do something */
unlock (m2); unlock (m1);

void p2 (void xignored) {

lock (m1); lock (m2);

/* do somethingx/

signal (c1)

unlock (m2);unlock (m1);

}
One lesson: Dangerous to hold locks when crossing abstraction
limits!
® e.g., lock(a) then call function that uses condition variable

34

Dealing with deadlocks

Prevention
Eliminating one of the conditions:

Non-blocking (wait-free) algorithms

Wait on all resources at once

e Use optimistic concurrency control (transactions)

Always lock resources in the same order
Avoidance

Prevent the system from entering an unsafe state (requires
knowing a priori the resource requirements of each process)

35

Dealing with deadlocks

Detection + corrective action
Problem: What corrective action?

® Process termination
® Rollback (Possible? Cost?)

Ignore the problem
Solution chosen by most OSes (including UNIX systems)

® Assume it occurs rarely enough to avoid the need for a
complex solution

Read “Operating Systems: Three Easy Pieces”, chapter 32 for a more
detailed discussion on deadlocks

36

Concurrent algorithms without locks

Non-blocking concurrent algorithms do not rely on locks.

Progress condition
® | ock freedom: If the algorithm runs long enough, it is
guaranteed that some operations will finish.

> Note that with locks, there is no such guarantee: if the thread
holding the lock crashes, no progress anymore.

® Wait freedom: Each operation takes a finite number of steps
to complete.

> Newcomers need to help older requests before executing their
own operation

These algorithms strongly rely on compare_and_swap() operations.

37

	
	Efficiency of concurrent code
	Consistency and Coherence
	Memory models
	Data Races
	Other topics

