Operating Systems

Process scheduling

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

The content of these lectures is inspired by:
® The lecture notes of Renaud Lachaize.
® The lecture notes of Prof. David Maziéeres.
® The lectures notes of Arnaud Legrand.

® Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:
® Modern Operating Systems by A. Tanenbaum
® Operating System Concepts by A. Silberschatz et al.

In this lecture

The scheduling problem
® Definition
® Metrics to optimize
¢ Dealing with 1/0

Scheduling policies
® First come, first served
® Shortest job first
® Round robin (time slicing)
® Multi-level feedback queues

e Completely fair scheduler

Agenda

The problem

Textbook algorithms
Multi-level feedback queues
CFS

Multiprocessor scheduling

Agenda

The problem

CPU scheduling

CPU;

P ... B P A CPU,

L 2

CPU,

The scheduling problem:

® The system has k processes ready to run

® The system has n > 1 CPUs that can run them
Which process should we assign to which CPU(s)?

About threads and multiprocessors

Thread scheduling

When the operating system implements kernel threads, scheduling
is applied to threads

® The following slides discuss process scheduling but also
applies to kernel threads.

Multiprocessors

Having multiple CPUs available to schedule processes increases the
complexity of the scheduling problem

® In a first step, we consider scheduling on a single CPU

Process state

scheduler)
'\mﬂ:nitted dispatch terminated

interrupt
1/O or event P 1/0 or event wait

Process state (in addition to new/terminated):
® Running: currently executing (or will execute on kernel return)
® Ready: can run, but kernel has chosen a different process to run

® Waiting: needs an external event (e.g., end of disk operation, signal
on condition variable) to proceed

Need for a scheduling decision

Which process should the kernel run?

® If no runnable process (ie, no process is in the ready state),
run the idle task

» CPU halts until next interrupt!.

e if a single process runnable, run this one.

® |If more than one runnable process, a scheduling decision must
be taken

'https://manybutfinite.com/post/what-does-an-idle-cpu-do/

https://manybutfinite.com/post/what-does-an-idle-cpu-do/

When to schedule?

When is a scheduling decision taken?

1. A process switches from running to waiting state

[/O request
Synchronization

2. A process switches from running to ready state

An interrupt occurs
Call to yield)

3. A process switches from new/waiting to ready state

4. A process terminates

Note that early schedulers were non-preemptive (e.g., windows
3.x). It means that no scheduling decision was taken until the
running process was explicitly releasing the CPU (case 1, 4 or 2

with yield()).

10

Preemption

A process can be preempted when kernel gets control. There are
several such opportunities:
® A running process can transfer control to kernel through a
trap (System call (including exit), page fault, illegal
instruction, etc.)
May put current process to wait — e.g., read from disk
May make other processes ready to run — e.g., fork, mutex
release
May destroy current process
® Periodic timer interrupt
If running process used up time quantum, schedule another

® Device interrupt (e.g., disk request completed, packet arrived
on network)

A previously waiting process becomes ready
Schedule if higher priority than current running process

11

Context switching

Changing the running process implies a context switch. This
operation is processor dependent but it typically includes:

® Save/restore general registers

Save/restore floating point or other special registers

Switch virtual address translations (e.g., pointer to root of
paging structure)
In case we are switching between processes (address space
switch)

Save/restore program counter
A context switch has a non negligible cost:

® In addition to saving/restoring registers, it may induce TLB
flush /misses, cache misses, etc. (different working set).

12

Context switch cost: cache misses

AEEEEEN EEEEEN
ENEEEER EEEEEEE
ENEEEEN | —> ENEEEE e
ERTEEE ERTEEN
EEEEEEN EEEEEEE

CPU cache CPU cache

Context switch cost: cache misses

AEEEEEN EEEEEEN
EEEEEEE EEEEEEN
EEEEEEN —> HEEEEEEE

ERTEEE EEEEEN
EEEEEEN EEEEEENE

CPU cache CPU cache

Context switch cost: cache misses

CPU cache

CPU cache

CPU cache

13

Scheduling criteria

Main performance metrics:
® Throughput: Number of processes that complete per time
unit (higher is better)
Global performance of the system

® Turnaround time: Time for each process to complete (lower is
better)

Important from the point of view of one process

® Response time: Time from request to first response (e.g., key
press to character echo) (lower is better)

More meaningful than turnaround time for interactive jobs

Secondary goals:
e CPU utilization: Fraction of time that the CPU spends doing
productive work (i.e., not idle) (to be maximized)

e Waiting time: Time that each process spends waiting in ready
queue (to be minimized)

14

Scheduling policy

The problem is complex because their can be multiple (conflicting)
goals:

® Fairness — prevent starvation

® Priority — reflect relative importance of processes
® Deadlines — must do x by a certain time

® Reactivity — minimize response time

e Efficiency — minimize the overhead of the scheduler itself

15

Scheduling policy

The problem is complex because their can be multiple (conflicting)
goals:

® Fairness — prevent starvation

® Priority — reflect relative importance of processes

Deadlines — must do x by a certain time

Reactivity — minimize response time

Efficiency — minimize the overhead of the scheduler itself

There is no universal policy
® Many goals — cannot optimize for all

¢ Conflicting goals (e.g., throughput or priority versus fairness)

15

Agenda

Textbook algorithms

16

How to pick up which process to run?

Why not picking first runnable process in the process table?

17

How to pick up which process to run?

Why not picking first runnable process in the process table?
® Expensive (looking up for that process)

® Weird priorities (low PIDs have higher priority?)

17

How to pick up which process to run?

Why not picking first runnable process in the process table?
® Expensive (looking up for that process)

® Weird priorities (low PIDs have higher priority?)

We need to maintain a set of ready processes
What policy?

° FIFO?
® Priority?

17

First Come, First Served (FCFS)

Description

® |dea: run jobs in order of arrival

¢ Implementation: a FIFO queue (simple)

Example

3 processes: P; needs 24 sec, P> and P3; need 3 sec. P; arrives
just before P> and Ps.

Pl a_

0 24 27 30

Performance
® Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
® Turnaround Time: Py : 24, Py : 27, P3: 30 (Avg = 27)

18

Can we do better?

Suppose we would schedule first P> and P3, and then P;.

AR 3

0 3 6 30

Performance
® Throughput: 3 jobs / 30 sec = 0.1 jobs/sec
® Turnaround Time: P; :30, P :3, P3:6 (Avg = 13)

Lessons learned
® The scheduling algorithm can reduce turnaround time

® Minimizing waiting time can improve turnaround time and
response time

19

Computation and 1/0

Most jobs contain computation and 1/0
(disk, network)

® Burst of computation and then wait on

/O

To maximize throughput, we must optimize
® CPU utilization
® 1/0O device utilization
> The I/O device will be idle until the
job gets small amount of CPU to issue
next 1/O request

» Response time is very important
for 1/0-intensive jobs

.
.
.

load store
add store
read from file

wait for /O

store increment
index
write to file

wait for I/O

load store
add store
read from file

wait for 11O

|

CPU burst

1/0 burst

CPU burst

1/0 burst

CPU burst

1/0 burst

20

Computation and 1/0O

The idea is to overlap |/O and computation from multiple jobs

Example: ideal scenario
Disk-bound grep + CPU-bound matrix multiply

wait for wait for wait for
grep disk disk disk
matrix
multiply

Q wait for CPU J

® With perfect overlapping, it is almost as if the two jobs run in
parallel

21

Duration of CPU bursts (distribution)

160
140
120
100

80

frequency

60

40

20

0 8 16 24 32 40
burst duration (milliseconds)

® In practice, many workloads have short CPU bursts
® What does this mean for FCFS?

22

Back to FCFS: the convoy effect

Consider our previous example with a disk-bound and a cpu-bound
application. What is going to happen with FCFS?

23

Back to FCFS: the convoy effect

Consider our previous example with a disk-bound and a cpu-bound
application. What is going to happen with FCFS?

wait for . wait for
grep disk wait for CPU disk
matrix
multiply

Imagine now there are several |/O-bound job and one CPU-bound
job ...

Back to FCFS: the convoy effect

Definition
A number of relatively-short potential consumers of a resource get
queued behind a heavyweight resource consumer

Consequences

¢ CPU bound jobs will hold CPU until exit or I/O (but 1/O rare
for CPU-bound threads)

® Long period with CPU held and no 1/0O request issued

® Poor I/O device utilization

Simple hack

® Run process whose 1/0 just completed
® What if after the 1/O it has a long CPU burst?

24

Shortest Job First (SJF)

Idea
® Schedule the job whose next CPU burst is the shortest

2 versions:

® Non-preemptive: Once CPU given to the process it cannot be
preempted until completes its CPU burst

® Preemptive: if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

The SJF scheduling algorithm is provably optimal, in that it gives
the minimum average waiting time for a given set of processes.
® Moving a short process before a long one decreases the waiting time
of the short process more than it increases the waiting time of the
long process

25

Examples
Process Arrival Time Burst Time

Py 0 7
P, 2 4
P; 4 1
P, 5 4

Draw the execution timeline and compute average turnaround
time, for FCFS, SJF, and SRTF scheduling policies.

26

Examples

0

Process Arrival Time Burst Time
Py 0 7
P> 2 4
Ps 4 1
Py 5 4
¢ Non-preemptive (SJF)
Py . 3 P,
T I T 1 1 I
7 12 16
® Preemptive (SRTF)
Py P> ' P> P, =
T T T I 1 1
2 4 5 7 11 16

0

Average turnaround time: FCFS= 8.75; SJF = 8; SRTF =7

26

SJF limitations

® Doesn’t always minimize average turnaround time
> Only minimizes response time
> Example where not optimal: Overall longer job has shorter
bursts
® |t can lead to unfairness or even starvation
> A job with very short CPU and I/O bursts will be run very
often
> A job with very long CPU bursts might never get to run

In practice, we can’t predict the future ...

® But we can estimate the length of CPU bursts based on the
past
> ldea: Predict future bursts based on past bursts with more
weight to recent bursts.
> (See textbooks for details, e.g., Silberschatz et al.)
» Hard to apply to interactive jobs

27

Round Robin (RR) Scheduling

Description

e Similar to FCFS scheduling, but timer-based preemption is
added to switch between processes.

® Time slicing: RR runs a job for a time slice (sometimes called
a scheduling quantum) and then switches to the next job in
the run queue.

e If the running process stops running (waits or terminates)
before the end of the time slice, the scheduling decision is
taken immediately (and the length of the time slice is
evaluated from this point in time)

Example

P | P - Py | P P

28

Round Robin (RR) Scheduling

Solution to fairness and starvation
® Implement the ready list as a FIFO queue

® At the end of the time slice, put the running process back at
the end of the queue
® Most systems implement some flavor of this

Advantages
® Fair allocation of CPU across jobs
® |ow variations in waiting time even when jobs length vary

® Good for responsiveness if small number of jobs (and time
quantum is small)

29

RR Scheduling: Drawbacks

RR performs poorly with respect to Turnaround Time (especially if
the time quantum is small).

Example
Let's consider 2 jobs of length 100 with a time quantum of 1:

Po\Po|Pu| P\ PP oo | PL P

0o 1 2 3 4 5 6 198 199 200

Even if context switches were for free:
® Avg turnaround time with RR: 199.5
® Avg turnaround time with FCFS: 150

30

Time quantum

How to pickup a time quantum?

® Should be much larger than context switch cost
We want to amortize context switch cost

® Majority of bursts should be shorter than the quantum

® But not so large system reverts to FCFS
The shorter the quantum, the better it is for response time

® Typical values: 1-100 ms (often ~ 10 ms)

31

Priority scheduling

Principle

® Associate a numeric priority with each process
Ex: smaller number means higher priority (Unix)

e Give CPU to process with highest priority (can be done
preemptively or non-preemptively)

Note that SJF is a priority scheduling where priority is the
predicted next CPU burst time.

Problem of starvation
® |ow priority processes may never execute

® Solution: Aging — increase the priority of a process as it waits

32

Agenda

Multi-level feedback queues

33

Multi-level feedback queues (MLFQ) scheduling

To be read: Operating Systems: Three Easy Pieces — chapter 8

Goals

® Optimize turnaround time (as SJF but without a priori
knowledge of next CPU burst length)

® Make the system feel responsive to interactive users (as RR
does)

Basic principles
® A set of queues with different priorities

® At any moment, a ready job is in at most one queue
® Basic scheduling rules:

» Rule 1: If priority(A) > priority(B), then A runs (B doesn't)
» Rule 2: If priority(A) == priority(B), RR is applied

34

MLFQ scheduling

0 — tail

1 — — — tail

2 —| ? > >

n — ——] — tall

Problem?

35

MLFQ scheduling

0 — tail

1 — — —tail

> y — tail

2 —| > >

Problem?

n — — — — tall

e Starvation: Only the processes with the highest priority run

® How to change priorities over time?

35

MLFQ scheduling: managing priorities (first try)

Additional rules
® Rule 3: When a job enters the system, it is placed at the
highest priority (the topmost queue)
Everybody gets a chance to be considered as high priority job
(first assume all jobs are short-running).

® Rule 4a: If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue)
The priority of CPU-intensive jobs decreases rapidly (this tries
to simulate SJF).

® Rule 4b: If a job gives up the CPU before the end of the time
slice, it stays at the same priority level.
Short CPU bursts are typical of interactive jobs, so keep them
with high priority for responsiveness
More generally, optimize overlapping between 1/0 and
computation

36

MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution

37

MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution
® Risk of starvation for CPU-bound jobs if too many |/O-bound
jobs
® A user can “trick” the system: put a garbage 1/O just before
the end of the time slice to keep high priority

® What if a program changes its behavior over time?

37

MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution
® Risk of starvation for CPU-bound jobs if too many |/O-bound
jobs
® A user can “trick” the system: put a garbage 1/O just before
the end of the time slice to keep high priority

® What if a program changes its behavior over time?

Priority Boost
® Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

> Avoids starvation
> Deals with the case of an application changing from
CPU-bound to I/O-bound

37

MLFQ scheduling: managing priorities (third try)

Better accounting
We replace rules 4a and 4b by the following single rule:

® Rule 4: Once a job uses up its time slice at a given level
(regardless of how many times it has given up the CPU), its
priority is reduced (i.e., it moves down one queue).
> The scheduler keeps track of how much CPU time each job
uses
> Impossible to use some “gaming strategy” to keep high priority

38

MLFQ scheduling: configuration

Several parameters of MLFQ can be tuned. There is no single
good configuration.

® How many queues?
Ex: 60 queues

® How long should be the time slice in each queue?

Some systems use small time slices for high priority queues,
and big time slices for low priority.

® How often should priority boost be run ?
Ex: every 1 second

39

Agenda

CFS

40

Proportional-share scheduling

Main goal
® Give fair access to the CPU to each process

® Does not try to optimize directly turnaround time or response
time

Early example: lottery scheduling

® Each process holds tickets
» Number proportional to the share of CPU it should receive

® Hold a lottery to take scheduling decisions

® Question: how to assign tickets?

41

The Completely Fair Scheduler

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

Default Linux scheduler since version 2.6.23 (author: Ingo Molnar)

Prior state
¢ Linux was using a MLFQ algorithm (the O(1) algorithm)

> Note that Windows (at least up to Windows 7) also uses a
MLFQ algorithm
> Complex management of priorities and |/O-bound tasks.

Goals of CFS
® Promote fairness + deal with malicious users

® CFS basically models an "ideal, precise multi-tasking
CPU” on real hardware

42

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

The Completely Fair Scheduler

Basic idea: Keep track of how unfair the system has been treating
a task relative to the others.

® Each task has a vruntime value that increases when it runs.
> Increase by the amount of time the task has run
> To account for priorities, this increase is weighted using a
priority factor.

® The next task to run is the one with the lowest vruntime.

> Ready tasks are sorted based on vruntime (uses a Red-Black
Tree data structure)

> When a new task is created, its vruntime is set to minimum
existing vruntime.

» When a task i/ wakes up, its vruntime is set as follows:

vruntime; = max(vruntime,-, vruntimemp;, — C)

43

Agenda

Multiprocessor scheduling

44

Multiprocessor scheduling

Why can't we simply reuse what we have just seen?
® The problem is more complex: We need to decide which
process to run on which CPU.

® Migrating processes from CPU to CPU is very costly: It will
generate a lot of cache misses

45

Multiprocessor scheduling

Affinity scheduling

® Typically one scheduler per CPU
® Risk of load imbalance
» Do cost-benefit analysis when deciding to migrate

]
[]
Py Py : Py Py
Py Py [P ! Py P,
- P P> : P P>
P> - P : P P>
]
CPU; CPUy CPU3 1 CPU; CPUy
[]
[]
- ' ..
no affinity ' affinity

CPU3

46

References for this lecture

® QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau
Chapter 7: CPU scheduling
Chapter 8: Multi-level feedback
Chapter 9: Lottery Scheduling
Chapter 10: Multi-CPU scheduling

e Operating System Concepts by A. Silberschatz et al.
Chapter 5: CPU scheduling

47

	
	The problem
	Textbook algorithms
	Multi-level feedback queues
	CFS
	Multiprocessor scheduling

