
Operating Systems
Process scheduling

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2024

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


References

The content of these lectures is inspired by:

• The lecture notes of Renaud Lachaize.

• The lecture notes of Prof. David Mazières.

• The lectures notes of Arnaud Legrand.

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:

• Modern Operating Systems by A. Tanenbaum

• Operating System Concepts by A. Silberschatz et al.

2



In this lecture

The scheduling problem

• Definition

• Metrics to optimize

• Dealing with I/O

Scheduling policies

• First come, first served

• Shortest job first

• Round robin (time slicing)

• Multi-level feedback queues

• Completely fair scheduler

3



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

4



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

5



CPU scheduling

CPU1

CPU2

...

CPUn

P1P2P3. . .Pk

The scheduling problem:

• The system has k processes ready to run

• The system has n ≥ 1 CPUs that can run them

Which process should we assign to which CPU(s)?

6



About threads and multiprocessors

Thread scheduling

When the operating system implements kernel threads, scheduling
is applied to threads

• The following slides discuss process scheduling but also
applies to kernel threads.

Multiprocessors

Having multiple CPUs available to schedule processes increases the
complexity of the scheduling problem

• In a first step, we consider scheduling on a single CPU

7



Process state

new

ready running

terminated

waiting

admitted

interrupt

scheduler
dispatch exit

I/O or event
completion

I/O or event wait

Process state (in addition to new/terminated):

• Running: currently executing (or will execute on kernel return)

• Ready: can run, but kernel has chosen a different process to run

• Waiting: needs an external event (e.g., end of disk operation, signal
on condition variable) to proceed

8



Need for a scheduling decision

Which process should the kernel run?

• If no runnable process (ie, no process is in the ready state),
run the idle task
▶ CPU halts until next interrupt1.

• if a single process runnable, run this one.

• If more than one runnable process, a scheduling decision must
be taken

1https://manybutfinite.com/post/what-does-an-idle-cpu-do/
9

https://manybutfinite.com/post/what-does-an-idle-cpu-do/


When to schedule?

When is a scheduling decision taken?

1. A process switches from running to waiting state
▶ I/O request
▶ Synchronization

2. A process switches from running to ready state
▶ An interrupt occurs
▶ Call to yield()

3. A process switches from new/waiting to ready state

4. A process terminates

Note that early schedulers were non-preemptive (e.g., windows
3.x). It means that no scheduling decision was taken until the
running process was explicitly releasing the CPU (case 1, 4 or 2
with yield()).

10



Preemption

A process can be preempted when kernel gets control. There are
several such opportunities:

• A running process can transfer control to kernel through a
trap (System call (including exit), page fault, illegal
instruction, etc.)
▶ May put current process to wait – e.g., read from disk
▶ May make other processes ready to run – e.g., fork, mutex

release
▶ May destroy current process

• Periodic timer interrupt
▶ If running process used up time quantum, schedule another

• Device interrupt (e.g., disk request completed, packet arrived
on network)
▶ A previously waiting process becomes ready
▶ Schedule if higher priority than current running process

11



Context switching

Changing the running process implies a context switch. This
operation is processor dependent but it typically includes:

• Save/restore general registers

• Save/restore floating point or other special registers
• Switch virtual address translations (e.g., pointer to root of
paging structure)
▶ In case we are switching between processes (address space

switch)

• Save/restore program counter

A context switch has a non negligible cost:

• In addition to saving/restoring registers, it may induce TLB
flush/misses, cache misses, etc. (different working set).

12



Context switch cost: cache misses

CPU cache

P1

CPU cache

P2

13



Context switch cost: cache misses

CPU cache

P1

CPU cache

P2

13



Context switch cost: cache misses

CPU cache

P1

CPU cache

P2

CPU cache

P1

13



Scheduling criteria
Main performance metrics:

• Throughput: Number of processes that complete per time
unit (higher is better)
▶ Global performance of the system

• Turnaround time: Time for each process to complete (lower is
better)
▶ Important from the point of view of one process

• Response time: Time from request to first response (e.g., key
press to character echo) (lower is better)
▶ More meaningful than turnaround time for interactive jobs

Secondary goals:

• CPU utilization: Fraction of time that the CPU spends doing
productive work (i.e., not idle) (to be maximized)

• Waiting time: Time that each process spends waiting in ready
queue (to be minimized)

14



Scheduling policy

The problem is complex because their can be multiple (conflicting)
goals:

• Fairness – prevent starvation

• Priority – reflect relative importance of processes

• Deadlines – must do x by a certain time

• Reactivity – minimize response time

• Efficiency – minimize the overhead of the scheduler itself

There is no universal policy

• Many goals – cannot optimize for all

• Conflicting goals (e.g., throughput or priority versus fairness)

15



Scheduling policy

The problem is complex because their can be multiple (conflicting)
goals:

• Fairness – prevent starvation

• Priority – reflect relative importance of processes

• Deadlines – must do x by a certain time

• Reactivity – minimize response time

• Efficiency – minimize the overhead of the scheduler itself

There is no universal policy

• Many goals – cannot optimize for all

• Conflicting goals (e.g., throughput or priority versus fairness)

15



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

16



How to pick up which process to run?

Why not picking first runnable process in the process table?

• Expensive (looking up for that process)

• Weird priorities (low PIDs have higher priority?)

We need to maintain a set of ready processes

What policy?

• FIFO?

• Priority?

17



How to pick up which process to run?

Why not picking first runnable process in the process table?

• Expensive (looking up for that process)

• Weird priorities (low PIDs have higher priority?)

We need to maintain a set of ready processes

What policy?

• FIFO?

• Priority?

17



How to pick up which process to run?

Why not picking first runnable process in the process table?

• Expensive (looking up for that process)

• Weird priorities (low PIDs have higher priority?)

We need to maintain a set of ready processes

What policy?

• FIFO?

• Priority?

17



First Come, First Served (FCFS)

Description

• Idea: run jobs in order of arrival

• Implementation: a FIFO queue (simple)

Example

3 processes: P1 needs 24 sec, P2 and P3 need 3 sec. P1 arrives
just before P2 and P3.

P1 P2 P3

0 24 27 30

Performance
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 24, P2 : 27, P3 : 30 (Avg = 27)

18



Can we do better?

Suppose we would schedule first P2 and P3, and then P1.

P1P2 P3

0 3 6 30

Performance
• Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

• Turnaround Time: P1 : 30, P2 : 3, P3 : 6 (Avg = 13)

Lessons learned
• The scheduling algorithm can reduce turnaround time

• Minimizing waiting time can improve turnaround time and
response time

19



Computation and I/O

Most jobs contain computation and I/O
(disk, network)

• Burst of computation and then wait on
I/O

To maximize throughput, we must optimize

• CPU utilization
• I/O device utilization

▶ The I/O device will be idle until the
job gets small amount of CPU to issue
next I/O request

▶ Response time is very important
for I/O-intensive jobs

20



Computation and I/O

The idea is to overlap I/O and computation from multiple jobs

Example: ideal scenario

Disk-bound grep + CPU-bound matrix multiply

wait for
disk

wait for
disk

wait for
disk

grep

matrix
multiply

wait for CPU

• With perfect overlapping, it is almost as if the two jobs run in
parallel

21



Duration of CPU bursts (distribution)

• In practice, many workloads have short CPU bursts

• What does this mean for FCFS?

22



Back to FCFS: the convoy effect

Consider our previous example with a disk-bound and a cpu-bound
application. What is going to happen with FCFS?

wait for
disk

wait for CPU
wait for
disk

. . .grep

matrix
multiply

Imagine now there are several I/O-bound job and one CPU-bound
job . . .

23



Back to FCFS: the convoy effect

Consider our previous example with a disk-bound and a cpu-bound
application. What is going to happen with FCFS?

wait for
disk

wait for CPU
wait for
disk

. . .grep

matrix
multiply

Imagine now there are several I/O-bound job and one CPU-bound
job . . .

23



Back to FCFS: the convoy effect

Definition
A number of relatively-short potential consumers of a resource get
queued behind a heavyweight resource consumer

Consequences

• CPU bound jobs will hold CPU until exit or I/O (but I/O rare
for CPU-bound threads)

• Long period with CPU held and no I/O request issued

• Poor I/O device utilization

Simple hack

• Run process whose I/O just completed

• What if after the I/O it has a long CPU burst?

24



Shortest Job First (SJF)

Idea
• Schedule the job whose next CPU burst is the shortest

2 versions:
• Non-preemptive: Once CPU given to the process it cannot be
preempted until completes its CPU burst

• Preemptive: if a new process arrives with CPU burst length
less than remaining time of current executing process, preempt
(Known as the Shortest-Remaining-Time-First or SRTF)

The SJF scheduling algorithm is provably optimal, in that it gives
the minimum average waiting time for a given set of processes.

• Moving a short process before a long one decreases the waiting time
of the short process more than it increases the waiting time of the
long process

25



Examples
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Draw the execution timeline and compute average turnaround
time, for FCFS, SJF, and SRTF scheduling policies.

• Non-preemptive (SJF)

P1 P3 P2 P4

0 7 8 12 16

• Preemptive (SRTF)

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16

Average turnaround time: FCFS= 8.75; SJF = 8; SRTF = 7

26



Examples
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

• Non-preemptive (SJF)

P1 P3 P2 P4

0 7 8 12 16

• Preemptive (SRTF)

P1 P2 P3 P2 P4 P1

0 2 4 5 7 11 16

Average turnaround time: FCFS= 8.75; SJF = 8; SRTF = 7

26



SJF limitations
• Doesn’t always minimize average turnaround time

▶ Only minimizes response time
▶ Example where not optimal: Overall longer job has shorter

bursts

• It can lead to unfairness or even starvation
▶ A job with very short CPU and I/O bursts will be run very

often
▶ A job with very long CPU bursts might never get to run

In practice, we can’t predict the future . . .

• But we can estimate the length of CPU bursts based on the
past
▶ Idea: Predict future bursts based on past bursts with more

weight to recent bursts.
▶ (See textbooks for details, e.g., Silberschatz et al.)
▶ Hard to apply to interactive jobs

27



Round Robin (RR) Scheduling

Description

• Similar to FCFS scheduling, but timer-based preemption is
added to switch between processes.

• Time slicing: RR runs a job for a time slice (sometimes called
a scheduling quantum) and then switches to the next job in
the run queue.

• If the running process stops running (waits or terminates)
before the end of the time slice, the scheduling decision is
taken immediately (and the length of the time slice is
evaluated from this point in time)

Example

P1 P2 P3 P1 P2 P1

28



Round Robin (RR) Scheduling

Solution to fairness and starvation
• Implement the ready list as a FIFO queue

• At the end of the time slice, put the running process back at
the end of the queue

• Most systems implement some flavor of this

Advantages

• Fair allocation of CPU across jobs

• Low variations in waiting time even when jobs length vary

• Good for responsiveness if small number of jobs (and time
quantum is small)

29



RR Scheduling: Drawbacks

RR performs poorly with respect to Turnaround Time (especially if
the time quantum is small).

Example

Let’s consider 2 jobs of length 100 with a time quantum of 1:

0 1

P1 P2

2 3

P1 P2

4 5

P1 P2

6 198 199 200

P1 P2· · ·

Even if context switches were for free:

• Avg turnaround time with RR: 199.5

• Avg turnaround time with FCFS: 150

30



Time quantum

How to pickup a time quantum?

• Should be much larger than context switch cost
▶ We want to amortize context switch cost

• Majority of bursts should be shorter than the quantum

• But not so large system reverts to FCFS
▶ The shorter the quantum, the better it is for response time

• Typical values: 1–100 ms (often ∼ 10 ms)

31



Priority scheduling

Principle

• Associate a numeric priority with each process
▶ Ex: smaller number means higher priority (Unix)

• Give CPU to process with highest priority (can be done
preemptively or non-preemptively)

Note that SJF is a priority scheduling where priority is the
predicted next CPU burst time.

Problem of starvation
• Low priority processes may never execute

• Solution: Aging – increase the priority of a process as it waits

32



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

33



Multi-level feedback queues (MLFQ) scheduling

To be read: Operating Systems: Three Easy Pieces – chapter 8

Goals
• Optimize turnaround time (as SJF but without a priori

knowledge of next CPU burst length)

• Make the system feel responsive to interactive users (as RR
does)

Basic principles

• A set of queues with different priorities

• At any moment, a ready job is in at most one queue
• Basic scheduling rules:

▶ Rule 1: If priority(A) > priority(B), then A runs (B doesn’t)
▶ Rule 2: If priority(A) == priority(B), RR is applied

34



MLFQ scheduling

0

1

2

...

n

tail

tail

tail

tail

Problem?

• Starvation: Only the processes with the highest priority run

• How to change priorities over time?

35



MLFQ scheduling

0

1

2

...

n

tail

tail

tail

tail

Problem?
• Starvation: Only the processes with the highest priority run

• How to change priorities over time?

35



MLFQ scheduling: managing priorities (first try)

Additional rules
• Rule 3: When a job enters the system, it is placed at the
highest priority (the topmost queue)
▶ Everybody gets a chance to be considered as high priority job

(first assume all jobs are short-running).

• Rule 4a: If a job uses up an entire time slice while running, its
priority is reduced (i.e., it moves down one queue)
▶ The priority of CPU-intensive jobs decreases rapidly (this tries

to simulate SJF).

• Rule 4b: If a job gives up the CPU before the end of the time
slice, it stays at the same priority level.
▶ Short CPU bursts are typical of interactive jobs, so keep them

with high priority for responsiveness
▶ More generally, optimize overlapping between I/O and

computation

36



MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution

• Risk of starvation for CPU-bound jobs if too many I/O-bound
jobs

• A user can “trick” the system: put a garbage I/O just before
the end of the time slice to keep high priority

• What if a program changes its behavior over time?

Priority Boost

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.
▶ Avoids starvation
▶ Deals with the case of an application changing from

CPU-bound to I/O-bound

37



MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution
• Risk of starvation for CPU-bound jobs if too many I/O-bound
jobs

• A user can “trick” the system: put a garbage I/O just before
the end of the time slice to keep high priority

• What if a program changes its behavior over time?

Priority Boost

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.
▶ Avoids starvation
▶ Deals with the case of an application changing from

CPU-bound to I/O-bound

37



MLFQ scheduling: managing priorities (second try)

Weaknesses of the current solution
• Risk of starvation for CPU-bound jobs if too many I/O-bound
jobs

• A user can “trick” the system: put a garbage I/O just before
the end of the time slice to keep high priority

• What if a program changes its behavior over time?

Priority Boost

• Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.
▶ Avoids starvation
▶ Deals with the case of an application changing from

CPU-bound to I/O-bound

37



MLFQ scheduling: managing priorities (third try)

Better accounting

We replace rules 4a and 4b by the following single rule:

• Rule 4: Once a job uses up its time slice at a given level
(regardless of how many times it has given up the CPU), its
priority is reduced (i.e., it moves down one queue).
▶ The scheduler keeps track of how much CPU time each job

uses
▶ Impossible to use some “gaming strategy” to keep high priority

38



MLFQ scheduling: configuration

Several parameters of MLFQ can be tuned. There is no single
good configuration.

• How many queues?
▶ Ex: 60 queues

• How long should be the time slice in each queue?
▶ Some systems use small time slices for high priority queues,

and big time slices for low priority.

• How often should priority boost be run ?
▶ Ex: every 1 second

39



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

40



The Completely Fair Scheduler
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt

Default Linux scheduler since version 2.6.23 (author: Ingo Molnar)

Prior state
• Linux was using a MLFQ algorithm (the O(1) algorithm)

▶ Note that Windows (at least up to Windows 7) also uses a
MLFQ algorithm

▶ Complex management of priorities and I/O-bound tasks.

Goals of CFS
• Promote fairness + deal with malicious users

• CFS basically models an ”ideal, precise multi-tasking
CPU” on real hardware

41

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt


The Completely Fair Scheduler

Basic idea: Keep track of how unfair the system has been treating
a task relative to the others.

• Each task has a vruntime value that increases when it runs.
▶ Increase by the amount of time the task has run
▶ To account for priorities, this increase is weighted using a

priority factor.

• The next task to run is the one with the lowest vruntime.
▶ Ready tasks are sorted based on vruntime (uses a Red-Black

Tree data structure)
▶ When a new task is created, its vruntime is set to minimum

existing vruntime.
▶ When a task i wakes up, its vruntime is set as follows:

vruntimei = max
(
vruntimei , vruntimemin − C

)

42



Agenda

The problem

Textbook algorithms

Multi-level feedback queues

CFS

Multiprocessor scheduling

43



Multiprocessor scheduling

Why can’t we simply reuse what we have just seen?

• The problem is more complex: We need to decide which
process to run on which CPU.

• Migrating processes from CPU to CPU is very costly: It will
generate a lot of cache misses

44



Multiprocessor scheduling

Affinity scheduling

• Typically one scheduler per CPU
• Risk of load imbalance

▶ Do cost-benefit analysis when deciding to migrate

CPU1

P2

P3

P1

P2

CPU2

P3

P1

P2

P3

CPU3

P1

P2

P3

P1

no affinity

CPU1

P1

P1

P1

P1

CPU2

P2

P2

P2

P2

CPU3

P3

P3

P3

P3

affinity

45



References for this lecture

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau
▶ Chapter 7: CPU scheduling
▶ Chapter 8: Multi-level feedback
▶ Chapter 9: Lottery Scheduling
▶ Chapter 10: Multi-CPU scheduling

• Operating System Concepts by A. Silberschatz et al.
▶ Chapter 5: CPU scheduling

46


	
	The problem
	Textbook algorithms
	Multi-level feedback queues
	CFS
	Multiprocessor scheduling


