
Operating Systems
Input/Output, HDDs, SSDs

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


References

The content of this lecture is inspired by:

• The lecture notes of Prof. David Mazières.

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:

• Modern Operating Systems by A. Tanenbaum

• Operating System Concepts by A. Silberschatz et al.

2



In this lecture

The mechanisms involved in the interactions between the OS
and the I/O devices

• Polling vs Interrupts

• Programmed I/O vs Direct Memory Access

• Drivers

The characteristics of Hard Disk Drives and the associated
challenges

• The hardware

• Scheduling of disks I/O

A glimpse on Solid State Drives based on Flash Memory

3



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

4



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

5



I/O: an important topic

Motivation
• Without I/O, computing is useless.

• It is the main purpose of most programs. (eg, editing a file,
browsing web pages)

All kinds of I/O devices

• mouse/keyboard

• disk/cdrom/usb stick

• network card

• screen/printer

A hardware/software infrastructure is required to interact with all
these devices.

6



The I/O Bus
A bus is a communication system interconnecting several devices.

A hierarchical architecture
• A general I/O bus (PCI).

▶ Connects the processor-memory subsystem to higher
performance devices (video card, network card, etc.)

• One or several peripheral buses to connect other devices
(USB, SATA)
▶ Connects to disks, keyboard/mouse, etc.

Why hierarchical?

• Performance: performance decreases with the length of the
bus

• Cost: designing a highly efficient bus is costly (and not useful
to all devices)

7



The I/O Bus
Figure by Silberschatz et al

Controller = collection of electronics that operates a bus or a
peripheral device

8



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

9



A canonical device

Registers: Status Command Data

Micro-controller + Memory +

Other hardware specific chips

interface

internals

hardware

Device hardware interface
The processor can access a set of registers:

• Status: Read to get current device status

• Command: Write to tell the device to perform a task

• Data: Read or write data

2 ways of interacting:

• Polling • Interrupts

10



Polling
Executing a command on a device

Sequence of actions

1. The OS repeatedly reads the status register until it’s not
BUSY .

2. The OS writes a chunck into the data register.

3. The OS sets the command register.

4. When the controller notices that a command is set, it sets its
status to BUSY .

5. The OS repeatedly reads the status register to know when the
command has been executed.

6. The controller reads the command register and the data
register, and executes the command to the device.

7. The controller clears the command and resets its BUSY
status once the command has been executed successfully. It
can set its status to ERROR in case an error occurred.

11



Polling

Drawbacks
• Wastes CPU cycles – especially when the device takes time to
execute the operation.

• Hard to schedule polling in the future.

Advantages

• Efficient if the device is ready very rapidly

• (Only a few cycles are needed for one polling)

Programmed I/O

When the main processor is involved in the data movement related
to I/O, it is called Programmed I/O (PIO).

12



Interrupts

Execution with polling 1

CPU

Disk

1 1 1 1 1 1 1 1 p p p p p p 1 1 1 1 1

1 1 1 1 1 1

Execution with interrupts

CPU

Disk

1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1

1 1 1 1 1 1

• Using interrupts allow putting process 1 to sleep until the I/O
is completed.

• The scheduler can schedule another process on the CPU.

1Legend for the figures – 1: Job 1; 2: Job 2, p: Polling.
13



How do interrupts work?1
• The controller raises an interrupt

▶ The CPU hardware has a wire called the interrupt-request line
(in fact multiple IRQs)

▶ The CPU senses it after executing every instruction

• The CPU catches the interrupt and dispatches it to the
interrupt handler
▶ The CPU performs a state save and jumps to the interrupt

handler routine at a fixed address in memory.

• The handler clears the interrupt by servicing the device
▶ The interrupt handler determines the cause of the interrupt

and performs the necessary processing
▶ New interrupts on the line are ignored while the handler is

running
• Tasks executed inside an interrupt handler should be small.

▶ After running the handler, the CPU is restored to the
execution state prior to the interrupt.

1To know more: https://www.safaribooksonline.com/library/view/
understanding-the-linux/0596005652/ch04s06.html

14

https://www.safaribooksonline.com/library/view/understanding-the-linux/0596005652/ch04s06.html
https://www.safaribooksonline.com/library/view/understanding-the-linux/0596005652/ch04s06.html


How do interrupts work?
Figure by Silberschatz et al

15



How to select the proper interrupt handler?

Basic solution
Check all devices to find which one is ready.

• Problem: there can be many devices to check.

Interrupt dispatching

The interrupt accepts an integer as input.
• It is an offset in a table called the interrupt vector

▶ Each entry in the vector contains a pointer to an interrupt
handler

• Problem: The host might include more devices than the
number of entries in the vector
▶ Use interrupt chaining (ie, each entry points to a list of

handlers)

16



How to select the proper interrupt handler?

Basic solution
Check all devices to find which one is ready.

• Problem: there can be many devices to check.

Interrupt dispatching

The interrupt accepts an integer as input.
• It is an offset in a table called the interrupt vector

▶ Each entry in the vector contains a pointer to an interrupt
handler

• Problem: The host might include more devices than the
number of entries in the vector
▶ Use interrupt chaining (ie, each entry points to a list of

handlers)

16



How to select the proper interrupt handler?

Basic solution
Check all devices to find which one is ready.

• Problem: there can be many devices to check.

Interrupt dispatching

The interrupt accepts an integer as input.
• It is an offset in a table called the interrupt vector

▶ Each entry in the vector contains a pointer to an interrupt
handler

• Problem: The host might include more devices than the
number of entries in the vector

▶ Use interrupt chaining (ie, each entry points to a list of
handlers)

16



How to select the proper interrupt handler?

Basic solution
Check all devices to find which one is ready.

• Problem: there can be many devices to check.

Interrupt dispatching

The interrupt accepts an integer as input.
• It is an offset in a table called the interrupt vector

▶ Each entry in the vector contains a pointer to an interrupt
handler

• Problem: The host might include more devices than the
number of entries in the vector
▶ Use interrupt chaining (ie, each entry points to a list of

handlers)

16



More on interrupts

Masking and priorities

• Some interrupts are maskable (handling can be deferred),
some are not (eg, errors).

• Priorities between interrupts can be defined
▶ A high-priority interrupt can preempt the execution of a

low-priority interrupt

17



Interrupts are not always better than polling

Hybrid approach

• Handling an interrupt is costly (hundreds of cycles)

• What if the device is ready almost immediately?
• Hybrid approach: The best of both world

▶ Start by polling
▶ If the device is not ready, put calling process to wait and

schedule another process

18



Interrupts are not always better than polling

Livelock
• The processor receives so many interrupts that it only
processes interrupts and never allows a user-level process to
run
▶ Problem with too many messages received on a network

interface.

• Better use polling

• Interrupt coalescing: wait before sending interrupts until
several requests have been completed

19



Improving data transfer performance

Execution with interrupts and PIO

(For a single word; C = copy)

CPU

Disk

1 1 1 1 1 C C C 2 2 2 2 2 2 1 1 1 1 1

1 1 1 1 1 1

Problem
• The processor wastes CPU cycles for every word

• What if a large amount of data has to be output to the
device?

20



Direct Memory Access (DMA)

Direct Memory Access engine

A DMA engine is a specific device that orchestrate data transfer
between memory and I/O devices without CPU intervention.

• The OS writes a command to the DMA engine with the
source address, the destination address and the amount of
data to transfer.

• The DMA engine sends an interrupt to the CPU when the
transfer is done.

CPU

DMA

Disk

1 1 1 1 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1

C

1

C C

1 1 1 1 1

21



Interacting with a device

How does the OS actually communicates with a device?

I/O instructions

• Specific instructions (in and out on x86)

• Allow to send data to specific device registers

Memory-mapped I/O

• The device-control registers are mapped into the address
space of the processor.

• The processor can issue reads and writes to those specific
addresses.

22



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

23



The problem

Context
• We would like the OS to be as general as possible (work on
any hardware)

• Each device can have a very specific interface

An example: a file system

We would like to open a file but it could be stored on different I/O
devices:

• A disk (different kinds)

• A USB stick

• A CD

24



Drivers

Keywords

• Abstraction

• Encapsulation

• Software layering

A piece of software must know in detail how a device works: this is
the Device Driver.

• The driver exposes a generic interface to the rest of the OS.

• Any new device should come with a driver that implements
(at least part of) the standard I/O interface to be usable.

25



Drivers
Figure by Silberschatz et al

26



About drivers

Drawbacks
• The generic approach might prevent from taking advantage of
advanced features of the hardware

• Example: SCSI devices provide rich error reporting. The Linux
I/O interface only reports generic I/O errors.

In the kernel
• In 2001, drivers were accounting for 70% of the kernel code

• Of course it is not all active at the same time

• Many bugs are in the drivers

27



Example: an IDE disk driver

The full example is to be read from Operating Systems: Three
Easy Pieces (chapter 36)

• 4 types of registers: Control, Command block, Status, Error

• accessed using in and out instructions on x86.
• Tasks of the driver:

▶ Wait for the disk to be ready
▶ Write parameters to command register
▶ Start the I/O (write READ or WRITE to the command

register)
▶ Data transfer (wait for DRQ status – disk request for data –

and write data to data port)
▶ Handle interrupts

• One interrupt per sector transferred or batching (one interrupt
after the transfer is done)

▶ Error handling

28



The case of Hard Disk Drives

29



30



30



30



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

31



Storage on a magnetic platter

• Platter: a circular hard surface on which data is stored
persistently by inducing magnetic changes to it.
▶ A disk may have one or multiple platters.

• Surface: One side of a platter
▶ Data is encoded on each surface

• Tracks: A surface is divided into concentric tracks.
▶ Many thousands of tracks on a surface
▶ Hundreds of tracks fit into the width of a human hair

• Cylinder: A stack of tracks of fixed radius is a cylinder

32



Storage on a magnetic platter

• Head/Arm: Reading or writing is accomplished by a disk head
attached to a disk arm.
▶ One head per surface
▶ Heads record and sense data along tracks
▶ Generally only one head is active at a time

• Sector: A track is divided into 512-byte blocks called sectors
▶ Sectors are numbered from 0 to n − 1 (n-sector disk)
▶ Multi-sectors operations are possible (eg, update 4 Mb at a

time)
▶ A sector is the granularity for atomic operations.

33



Cylinders, tracks, & sectors
Figure by Silberschatz et al

34



Accessing a sectors: Seeks

A seek is the action of moving the head from its current track to
the track containing the target sector.

4 phases

• Acceleration: accelerate arm to max speed or half-way point

• Coasting: move at max speed (for long seeks)

• Slowdown: stops arm near destination
• Settle: adjusts head to actual desired track

▶ Is a costly operation (0.5 to 2 ms)
▶ The hard drive must be certain to find the right track!

35



Accessing some sectors

Other delays:

• Rotational delay: Time for the target sector to pass under the
disk head.
▶ Rotating speed of modern disks: 7,200 RPM to 15,000 RPM

(RPM= rotations per minute)

• Transfer time: Time for I/O to take place.

I/O Time = Seek time + Rotational delay + Transfer time

36



About performance

Comments about performance

• Accessing sectors that are close is faster

• Accessing contiguous sectors is faster than random access

Cache
Disks may use a cache to improve observed performance

• Read and cache consecutive sectors

• Caching writes can be dangerous (breaks atomicity)

37



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

38



Context

The OS should decide in which order to execute I/O on the disk to
optimize performance

• Contiguous accesses are better

• Try to avoid long seeks.

Differences with process scheduling

• It is possible to estimate seek time and rotational delay (the
future).

• A strategy similar to SJF can be applied!

39



Context

The OS should decide in which order to execute I/O on the disk to
optimize performance

• Contiguous accesses are better

• Try to avoid long seeks.

Differences with process scheduling

• It is possible to estimate seek time and rotational delay (the
future).

• A strategy similar to SJF can be applied!

39



First Come First Served (FCFS)

Process disk requests in the order they are received

Advantages

• Easy to implement

• Good fairness

Disadvantages

• Cannot exploit locality of requests

• Increases average latency, decreases throughput

40



FCFS example 1

1The numbers are track ids
41



Shortest seek time first (SSTF)

Always pick request with shortest seek time

Advantages

• Exploits locality of disk requests

• Higher throughput

Disadvantages

• Starvation (some aging strategy could be used to fix the
problem)

• The OS does not always know what request will be the fastest
▶ The OS does not have direct access to the disk geometry

(position of the sectors)

42



Shortest seek time first (SSTF)

Always pick request with shortest seek time

Advantages

• Exploits locality of disk requests

• Higher throughput

Disadvantages

• Starvation (some aging strategy could be used to fix the
problem)

• The OS does not always know what request will be the fastest
▶ The OS does not have direct access to the disk geometry

(position of the sectors)

42



SSTF example

43



“Elevator” scheduling (SCAN)

Sweep across disk, servicing all requests passed

• Like SSTF, but next seek must be in same direction
• Different variants:

▶ Switch directions only if no further requests (SCAN)
▶ Back to first track when no further requests (Circular-SCAN)

Advantages

• Takes advantage of locality

• Bounded waiting

Disadvantages

• Might miss locality SSTF could exploit

44



“Elevator” scheduling (SCAN)

Sweep across disk, servicing all requests passed

• Like SSTF, but next seek must be in same direction
• Different variants:

▶ Switch directions only if no further requests (SCAN)
▶ Back to first track when no further requests (Circular-SCAN)

Advantages

• Takes advantage of locality

• Bounded waiting

Disadvantages

• Might miss locality SSTF could exploit

44



CSCAN example

45



More on scheduling

• Some strategies try to mix SSTF and SCAN
▶ VSCAN(r): Apply SSTF but with a weight r to account for

the direction

• All presented strategies only take into account seek time
▶ Rotational delay might be as important as seek time
▶ SPTF (Shortest Positioning Time First) tries to do this
▶ However rotational delay is hard to evaluate at the OS level

46



Scheduling with modern disks

Features of modern disks
• Disks can accommodate multiple outstanding requests

▶ The OS can send multiple requests to the disk without waiting
for completion

• Disks include sophisticated schedulers
▶ They can implement SPTF accurately!

• Disks can also do I/O merging
▶ Wait for multiple I/O requests to try to merge consecutive

ones in a single multi-blocks request

Interactions with the OS
• The OS issues a few requests (tries to select best from its
point of view)

• The disk applies advanced scheduling to those requests

47



Agenda

Introduction

Interacting with an I/O device

Drivers

Basic Geometry of a disk

Scheduling disk I/O

Flash-based SSDs

48



Flash memory
NAND-Based Flash

• Transistor storing one or multiple bits
• Single-level Cell

▶ Store one bit per cell
▶ Fast – high endurance – expensive
▶ Industrial usage

• Multi-level cell
▶ Store several bits per cell (eg, 3)
▶ Slower – lower endurance – cheaper
▶ Used in USB keys and SSDs

Flash chips structure

• Chips are organized in banks

• Banks are divided in blocks (typically between 128 KB and 2
MB)

• Blocks are divided in pages (typically between 1 KB and 8 KB)

49



Operations on data

Reading

• Granularity: a page
• Performance: 10s of microseconds

▶ 2 order of magnitude faster than rotating disks

Writing

Writing requires erasing a block before writing (programming) a
page.

• Erasing a block
▶ Destroys the content of the block by setting all bits to 1
▶ Requires copying first the data that should not be lost
▶ Performance: A few milliseconds

• Programming a page
▶ Setting some bits to 0 by writing a page
▶ Performance: 100s of microseconds

50



Reading and writing to flash memory
Figure by D. Nosachev

51



Challenges associated with Flash memory

Write performance

• Overwriting a page is costly and complex
• Need to minimize the write amplification

▶ The ratio between the size of logical writes and physical writes.

Wear out
• The number of times a block can be programmed/erased is
limited (O(10000))
▶ Extra charge is accumulate in the cells on erase operation
▶ When the charge is too high, it becomes impossible to

differentiate between 0 and 1.

• Need for wear leveling
▶ Ensure that all blocks wear out more or less at the same time

52



From Flash to Flash-based SSDs
Solid-state drive (SSD) = A device that store data persistently
using integrated circuits without any involvement of moving
mechanical parts.

Basic description

• Offers 512-byte sector read/write operations based on
addresses (classical storage device interface)

• A SSD includes:
▶ Some number of flash chips

• Accessing multiple chips in parallel increases performance

▶ Some amount of volatile memory
▶ Control logic to orchestrate device operations

• Implements a flash translation layer

Flash translation layer

• Transforms logical operations into internal flash operations

53



Implementation of FTL

A log structure

• Creation of a log: On a logical write of a block1, the block is
appended to the end of the log
▶ Limited write amplification
▶ Good wear-leveling

• A mapping table stores the address of the logical blocks
▶ Stored in memory

• Garbage collection is needed
▶ Complex and costly operation
▶ Find garbage pages and reclaim the dead blocks

• Might require copying valid pages

1A logical block typically corresponds to a physical page
54



References for this lecture

• Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau
▶ Chapter 36: I/O devices
▶ Chapter 37: Hard Disk Drives
▶ Chapter 44: Flash-based SSDs

• Operating System Concepts by A. Silberschatz et al.
▶ Chapter 13: I/0 systems

55


	
	Introduction
	Interacting with an I/O device
	Drivers
	Basic Geometry of a disk
	Scheduling disk I/O
	Flash-based SSDs


