Operating Systems
File Systems

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

References

The content of these lectures is inspired by:
® The lecture notes of Prof. David Maziéres.

® QOperating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Other references:
® Modern Operating Systems by A. Tanenbaum
® QOperating System Concepts by A. Silberschatz et al.

Goals

of the lecture

Get a global picture of the challenges associated with file
systems implementation

Study a complex software engineering problem

See how the characteristics of HDDs can be taken into
account in the software design

Understand the main concepts used in the design of famous
file systems (FAT, FFS, ext2, ext3, ext4, NTFS, btrfs, ...)

Included in this lecture

Basic concepts associated with a file system

® Data blocks
® |nodes
® Bitmaps

Extents

Advanced software engineering techniques

® Multi-level indexes
® Locality (to improve efficiency)
¢ Journaling (to deal with failures)

e Copy-on-write

Agenda

Introduction

File system implementation
The Fast File System
Dealing with failures

Log-structured file systems

Agenda

Introduction

Writing blocks of data to disk is not that much fun

Disks provide a means to store data (and programs) reliably.

How to organize the data?

2 key abstractions
® Files: Array of bytes that can be read and written — associate
bytes with a name.

® Directories: A list of files and directories — associate names
with each other.

Operations on files

System calls

open(): create/open a file

read()/write(): read /write an opened file sequentially
close(): close an opened file

Iseek(): move to an offset in a file

fsync(): force write of dirty data to disk

rename(): change name of a file

stat(): get metadata of a file

link(): associate a file to a directory

unlink(): delete a file

About directories (UNIX)

Structure
® A tree structure with “/” being the root directory

® By default a directory includes 2 entries:

> . : a reference to itself
> .. : a reference to the parent directory

System calls

® mkdir(): create a directory
® rmdir(): delete a directory — all files are unlinked first.
® opendir()/readdir()/closedir()

Disks versus memory

® Disk provide persistent storage
Data won't go away after reboot

® Disks are much slower than memory

Latency: ~ 50 ns for memory vs ~ 8 ms for disks (5 order of
magnitude)

Throughput: > 1 GB/s for memory vs ~ 100 MB/s for disks
(1 order of magnitude)

® Capacity of disks is usually much larger

10

Agenda

File system implementation

11

About file systems

Introducing comments

® All implemented in software
® One of the most complex part of OS
> Active research topic

® Plenty of FS implementations

Purpose of a file system

® Translate name+offset to disks blocks

® Keep track of free space

12

About the tanslation of logical to physical location

We were solving similar problems with virtual memory.

What is easier with FS:
e CPU time is no big deal (compared to disks performance)

® Simpler access pattern (sequential access)

What is more complex with FS:

® Each layer of translation = potential access to disk

® Range is very extreme: Many files <10 KB, some files many
GB

13

Observations related to performance

® FS performance is dominated by the number of disk accesses

> Say each access costs ~10 milliseconds
> Touch the disk 100 extra times = 1 second

® Access cost dominated by movement, not transfer:

> seek time + rotational delay + bytes/diskBW

» 1 sector: 5ms + 4ms + 5us (=~ 512 B/(100 MB/s)) ~ 9ms
> 50 sectors: 5ms + 4ms + .25ms = 9.25ms

» Can get 50x more data for only ~3% extra overhead!

® QObservations that might be helpful:

> All blocks in file tend to be used together, sequentially
> All files in a directory tend to be used together

14

File system implementation

What we need to define and understand:
® The data structures of the file system
> How the data and the metadata are organized
® The access methods
> How the data and metadata are accessed during a call to
open/read/write/. ..

15

Blocks

Blocks
® Disks are divided into blocks of fixed size
® Typically 4 KB blocks
® Numbered from 0 to N-1

HIEERNEEENERENERENEERNRERRREERNED
0 31

Figure: Abstract view of a disk = Array of blocks

16

Blocks

Blocks
® Disks are divided into blocks of fixed size
® Typically 4 KB blocks
® Numbered from 0 to N-1

HEERRERECENENNNNNSENENENEE NN
0 31

Figure: Abstract view of a disk = Array of blocks

® Most blocks are data blocks!

® They form the data region

16

Inodes

Inodes

e Store the metadata for a file (which data blocks belong to the
file, file size, owner, access rights, ...)

® |node stands for index node

IRERERRERERRERNRERRRRERERERREREN
0 31

17

Inodes

Inodes

e Store the metadata for a file (which data blocks belong to the
file, file size, owner, access rights, ...)

® |node stands for index node
® |nodes are stored in the inode table

® One block can contain multiple inodes

0 31

17

Tracking free space

We need a way to know if a data block or an inode is free.

Bitmap
® Set of bits (one for each object)
® A bit set means the object is in-use.

® We use one inode bitmap and one data bitmap

0 31

18

The superblock

Superblock

® First block read when mounting a file system
e Contains information about the file system:

> File system type

» Number of data blocks and inodes
> Beginning of the inode table
>

19

Inodes: How to index the content of a file?

Indexing inodes
® An inode is identified by an inumber
® Corresponds to its index in the inode table

e Computing in which sector an inode is stored is easy (inputs:
inode table start address, inumber, size of inode, size of block,
size of sector)

Direct pointer

® An inode can include an array of direct pointers
> Disk address of the data blocks belonging to the file

20

Example with direct pointers
Figure by Prof D. Mazieres

file a

Problem

file b

21

Example with direct pointers
Figure by Prof D. Mazieres

file a

Problem
® What if the file is big?

file b

21

Inodes: How to index the content of a file?

Multi-level index
® Use indirect pointers

® Allocate an indirect block from the data-block region

> Use this block to store direct pointers
> With blocks of 4 KB and 4-bytes disk addresses, we can store
1024 addresses in one block.

® Instead of pointing to a block of data, we make the inode to
point to an indirect block

® What if we want to support larger files?

22

Inodes: How to index the content of a file?

Multi-level index

® Use indirect pointers
® Allocate an indirect block from the data-block region
> Use this block to store direct pointers
> With blocks of 4 KB and 4-bytes disk addresses, we can store
1024 addresses in one block.
® Instead of pointing to a block of data, we make the inode to
point to an indirect block

® What if we want to support larger files?
> Use double indirect pointers

22

Multi-level index in practice

Several file systems (including Linux ext2 and ext3) use a
multi-level index in the form of an unbalanced tree:
® The inode includes a few direct pointers (eg, 12 entries)
o If the file gets bigger, allocates an indirect block
Max file size becomes (12 + 1024) x 4 KB.
® |f the file gets bigger, allocate a double indirect block

Allocate a block that stores pointers to indirect blocks
Max file size becomes (12 + 1024 + 10242) x 4 KB.

® What if the file gets bigger?
Use a triple indirect pointer.

23

Example of multi-level index
Figure by Prof D. Mazieres

data blocks Tndirect M

Ptr 1

[]Indirect blks

ptr 13

pir

— [

pir 14

stuff /- Pip 1 /-
Ptr 1 1 [] ptr2
IRy i -
ptr 3 /- ptr 128

pir 4

ptr 128

/-P
Double indirect block

Why such an imbalanced tree?

24

Example of multi-level index
Figure by Prof D. Mazieres

data blocks Tndirect M
stuff

Ptr 1 /-

Ptr1 1 ptr2 1

1 2 4
ET: 3 ptr 128/'-
pir 4

[]Indirect blks
Ptr 1

ptr2 — [__|

ptr 128

AR

ptr 13
pir 14

/
Double indirect block

Why such an imbalanced tree?

® Recall that most files are small

e Optimized for this case: limit the number of indirections.

24

Alternatives to multi-level indexes

Linked-based approach

® An inode stores a single pointer to the first data block of the
file

® Next block address is stored at the end of each data block

| how do you find

M the last block in a?

y.4 4
| E—

e =
file a (base=1) file b (base=b)

25

Alternatives to multi-level indexes

Linked-based approach

® An inode stores a single pointer to the first data block of the
file

® Next block address is stored at the end of each data block

® Problem: Performance — large number of disk accesses to find
the last block

| how do you find

M the last block in a?

y.4 4
| E—

e =
file a (base=1) file b (base=b)

25

Alternatives to multi-level indexes

FAT
The old windows file system is linked-based:
¢ Improved with a FAT table (File Allocation Table)
Data structure stored in memory
The table contains an entry for each data block
An entry contains the index of the next data block
e FAT-16: 216 = 65536 entries, max FS size with 512-Byte
blocks = 32 MiB

26

Example with FAT

Figure by Prof. D. Mazieres

Directory FAT (16-bit entries)

g 0] free file a
b: 2 1| eof n
2 1
3| eof
4 3f file b
5 €0 2 1
6 4 . .

® Drawback: pointer chasing

® Compared to pure linked-based approach, better because the
FAT table can be loaded into memory

27

Alternatives to multi-level indexes

Use extents instead of pointers in index

® Goal: reduce the amount of metadata compared to pure
index-based approaches

® Extent = disk pointer 4 length in blocks

® Avoids one entry per data block
e Multiple extents are used for flexibility

With a single extent per file, it might be hard to find a big
enough contiguous free space on the disk to store a file.

® Example: Linux ext4

Backward compatibility with ext3: ext3 can be seen as ext4
with extents of size 1.

28

Directories

A directory

e A file of type directory (i.e., with metadata type= “directory”)
® |t has an inode that points to data-blocks

® Directory inodes and data blocks are stored in the inode table
and data region of the file system

® Root dir has a pre-defined inumber (“2" in UNIX systems)

Data stored in a directory data block

® |nformation about the files and directories it contains
® For each entry:

The inumber
The name of the entry
(The size of the name)

29

Managing free space

Bitmap

® Tracks free inodes and free data blocks (2 separate bitmaps)

® Bitmaps are only accessed if a new allocation is needed

Allocation policy

® Looks for a set of contiguous data blocks when creating a new
file
Ensures contiguous accesses (at least a few)
ext2 and ext3 do this (look for 8 contiguous blocks)

30

About performance

With our FS, what is the number of 1/O when accessing a file?
¢ |t depends on the length of the path (at least two reads per
directory)

® For write/create operations, bitmaps and inodes need also be
modified

Caching

® Most file systems use main memory as a cache to store
frequently accessed blocks
® Cache for reads: can prevent most 1/Os
® Cache for writes:
Impair reliability
Most FS cache writes between 5 and 30 seconds

Better 1/O scheduling
Merge writes (eg, for the bitmaps)

31

Agenda

The Fast File System

32

Take a step back

Did we take into account the fact that we were dealing with a disk
in the design of our file system?

33

Take a step back

Did we take into account the fact that we were dealing with a disk
in the design of our file system? No

How bad is it?

® The presented design corresponds to the original UNIX file
system by K. Thompson

® |t has been shown that after some time, such a file system
may deliver only 2% of overall disk bandwidth

® We lose all our time in seeks

33

The Fast File System (FFS)

Disk awareness

® Divide the disks in groups called cylinder groups
® Each cylinder group is a mini file system. It includes:
A copy of the superblock
Per-groups bitmaps
Per-groups inode and data blocks regions
e Allocate inode and data blocks for a file in the same group
They are guaranteed to be on close tracks/cylinders

Cylinder group 1

cylinder group 2\

34

The Fast File System (FFS)

Allocation policy

® Two ideas:

> Keep related stuff together
> Balance the load between groups

® For directories: Select a group with a low number of allocated
directories and a high number of free inodes.

® For files: Place them in the same group as the directory they
belong to.

35

The Fast File System (FFS)

Large files problem

e If a file fills the group it belongs to, the FFS allocation
strategy is defeated

> Other related files cannot be stored in the same group.

36

The Fast File System (FFS)

Large files problem
e If a file fills the group it belongs to, the FFS allocation
strategy is defeated
Other related files cannot be stored in the same group.

Solution
® Only allocate the first data blocks in the same group as the
directory

® Then place file chunks in different groups (chosen based on
low utilization for instance)

® About chunk size:
It should be large enough for data transfer not to be
dominated by seek time.
FFS uses the structure of inodes: each indirection block (and
related data blocks) is placed in a different group.

36

Agenda

Dealing with failures

37

Problem with failures

Crash failures can occur at any moment (eg, power outage).

® Data saved on disk should still be available on restart after a
crash.

Our file system may be impacted by such a crash!

® A crash may leave the file system in an inconsistent state

38

Inconsistent states

Update operations on the file system (create dir, create file, write
file) require several I/O operations.
® What if a crash occurs before all operations related to an
update are completed?
» The file system will be in an inconsistent state

[llustration
® Append one data block to a file: requires 3 writes (data
bitmap, the file inode, the data block)
> Only data block is written: FS remains consistent, data is lost
> Only inode is written: Inode points to trash, bitmap and inode
are not consistent
> Only bitmap is written: A data block is lost (space leak)

39

Solutions

Ideal solution

® Make all updates in one atomic step to avoid any
inconsistencies

> Impossible, the disk does one write at a time

2 existing techniques

® File system checker (fsck)

® Journaling

40

File system checker

Basic idea
® |et inconsistencies happen and try to fix them on restart

® Scan the file system (superblock, bitmaps, inodes) and check
for inconsistencies

Comments
e Extremely inefficient!

® Checking the whole FS when maybe a single inode is
inconsistent.

41

Journaling

Basic idea
e Write-ahead logging (database community)

e Write the update to be applied in a journal (also stored on
disk) before actually running it

® |f a failure occurs in the middle of the update, we can read
the journal on restart and try again (or at least fix
inconsistencies).

Comments

® Solution used by many FS including Linux ext3, Linux ext4
and Windows NTFS.

® Linux ext3 looks the same as ext2 except that a journal is
added to the file system (one more region)

42

Journaling

Transactions

¢ Updates are saved in the journal as transactions (TxB:
transaction begin, TxE: transaction end)

TxB

el I[v2] | B[v2] | D

Journaling

Transactions
¢ Updates are saved in the journal as transactions (TxB:
transaction begin, TxE: transaction end)
® The TxE block is written only when the transaction becomes
valid (all information regarding the update have been written
to the journal)

Write of TxB and transaction data can be issued in parallel;
Write of TxE is done only once first writes are finished

TxB TxE
Iv2] | B[v2
=1 '] BMI) D

43

Journaling steps

Update operations:

® Journal write: Write the content of the transaction and wait
for write to finish

e Journal commit: Write the transaction commit block (TxE)
and wait for it to finish

® Checkpoint: Write the actual update to the disk

Recovery

® Replay all committed transactions (TxE has been written)

® Ignore uncommitted transactions

Note that to improve performance several updates can be
aggregated in a single large transaction (Linux ext3)

44

More on journaling

Managing journaling storage space

e A circular buffer (the journal superblock stores the begin and
end index)

e After a checkpoint, the indexes are updated correspondingly

® Prevents having to replay a lot of transactions on restart

Metadata journaling

® Journaling has a high cost: data are written twice
® How to avoid inconsistencies and avoid writing data twice?

Write data blocks directly in parallel with writing the
transaction to the journal (before commit)

No inconsistency (in the worst case the data is lost)

Only metadata updates are committed in the journal

® Used by Linux ext3 (optional), and Windows NTFS

45

More on journaling: Block reuse

Quote from Stephen Tweedie (ext3 dev leader):
“What's the hideous part of the entire system? ... It's
deleting files. (...) You have nightmares around what
happens if blocks get deleted and then reallocated”

Problem

® Use of metadata journaling
® A directory is deleted, then a file is created and reuses the
data blocks of the deleted directory.

Content of the file is not in the journal.
Content of data blocks for directories is considered as
metadata (stored in the journal).

® A crash occurs and all operations related to the deleted
directory are still in the journal.

® How to prevent damaging the file by replaying operations
related to the directory?

46

More on journaling: Block reuse

Solution
® Add revoke transactions to the journal

> Deleting a directory adds a revoke transaction to the journal.

® Don't replay transactions related to revoked data blocks

> On recovery, the journal is first scanned to look for revoked
data blocks

47

Agenda

Log-structured file systems

438

Motivation

Introduction comments

® With growing memory size, all 1/O ops become update ops
(reads hit the in-memory cache)

¢ Each update operation induces several |/O writes.

® Existing file systems induce small seeks and rotational delays

for each update operation (write the bitmap, inode, data
blocks).

> True even when the disk is divided into cylinder groups

How to make all writes sequential?

49

Log-structured file systems

Basic idea
e Write all updates sequentially to the disk (data and metadata)

® Use write buffering to have large sequential writes to apply
® Copy-on-Write (CoW) strategy (Linux btrfs, Sun’s ZFS).

Instead of overwriting existing content on update, always write
to new portions of the disk.
Affordable as disk space becomes less expensive

e Examples: LFS (The Log-structures File System)

DO D1 D2 D3

50

LFS

The Inode map (Imap)

® How to find inodes?
® Solution: A new level of indirection

P An inode map stores the address of the most recent version of
each inode.

® Update of the inode map is part of the sequential updates

» Only the modified chunks of the map are included in the
update

51

LFS

The checkpoint region

® How to find the inode map chunks after restart?

® Solution: A checkpoint region that is updated periodically
(every 30 seconds)

52

Garbage collection (GC)

We need to free space at some point. 2 problems have to be
solved:

Determining if a block is still valid

e Store inode number (file it belongs to) and offset in file in
each block

® Read the inode to determine if it still points to that block

Avoiding creating holes in the address space when cleaning

® The LFS cleaner creates new segments out of old still valid
segments and write them again.

53

Limits of Log-structured File Systems

Performance
® Risks of fragmentation

> Slowly growing files/ simultaneous growing files
» Non-sequential modifications of files

® Performance slowdown when it nears maximum capacity
» GC has to be run often

54

References for this lecture

® Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau

Chapter 39:
Chapter 40:
Chapter 41:
Chapter 42:
Chapter 43:

Files and Directories

File System Implementation
Fast File System

FSCK and Journaling
Log-Structured File System

55

	
	Introduction
	File system implementation
	The Fast File System
	Dealing with failures
	Log-structured file systems

