
Memory Management:
Free space and dynamic allocation

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak

– David Mazières (Stanford)
• (most slides/figures directly adapted from those of the CS140 class)

– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus Püschel
(Carnegie Mellon University)

• Textbook: Computer Systems: A Programmer’s Perspective (2nd Edition)
• CS 15-213/18-243 classes (some slides/figures directly adapted from these

classes)

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

– Textbooks (Silberschatz et al., Tanenbaum) 2

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

3

Dynamic memory allocation – Introduction (1)

• Almost every program uses it
– Gives very important functionality benefits

• Avoids statically specifying complex data structures
• Avoids static overprovisioning of memory
• Allows having data grow as a function of input size

– But can have a huge impact on performance

• A general principle, used at several levels of the
software stack:
– In the operating system kernel, to manage physical memory
– In the C library, to manage the heap, a specific zone within a

process’ virtual memory
– (And also possibly) within an application, to manage a big chunk

of virtual memory provided by the OS
4

Dynamic memory allocation – Introduction (2)

• Today’s focus: how to implement it
– Lectures draws on [Wilson et al.] (good survey from 1995)

• Some interesting facts (on performance)

– Changing a few lines of code can have huge, non-obvious
impact on how well an allocator works (examples to come)

– Proven: impossible to construct an “always good” allocator

– Surprising result: after decades, memory management is still
poorly understood

5

Why is it hard?

• Must satisfy arbitrary sequence of alloc/free operations
• Easy without free:

– Set a pointer to the beginning of some big chunk of memory (“heap”)
and increment on each allocation

• Problem: free creates holes (“fragmentation”). Result: lots of
free space but cannot satisfy request

• Why can’t we just move everything to the left when needed?
– This requires to update memory references (and thus to know about the

semantics of data)

6

External Fragmentation

• Occurs when there is enough aggregate heap
memory, but no single free block is large enough

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

7

Internal Fragmentation
• For a given block, internal fragmentation occurs if

payload is smaller than block size

• Caused by:
– overhead of maintaining heap data structures

• (e.g., memory footprint of metadata headers/footers)
– padding for alignment purposes
– explicit policy decisions

• (e.g., decision to return a big block to satisfy a small request,
in order to make the operation go faster)

payload Internal
fragmentation

block

Internal
fragmentation

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

8

More abstractly

• What an allocator must do:
– Track which parts of memory are in use, and which parts are free
– Ideally: no wasted space, no time overhead

• What the allocator cannot do:
– Control order, number and size of the requested blocks
– Change user pointers (therefore, bad placement decisions are

permanent)

• The core fight: minimize fragmentation
– Application frees blocks in any order, creating holes in “heap”
– If holes are too small, future requests cannot be satisfied

9

What is (external) fragmentation?

• Inability to use memory that is free
• Two factors required for external fragmentation

– Different lifetimes:
• If adjacent objects die at different times, then fragmentation

• If they die at the same time, then no fragmentation

– Different sizes:
• If all requests have the same size, then no fragmentation

• (As we will see later, in the context of virtual memory, paging relies
on this to remove external fragmentation)

10

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

11

Important design decisions (1/5)

• Free block organization: How do we keep track of free
blocks?

• Placement: How do we choose an appropriate free
block in which to place a newly allocated block?

• Splitting: After we place a newly allocated block in
some free block, what do we do with the remainder of
the free block?

• Coalescing: What do we do with a block that has just
been freed?

12

Important design decisions (2/5)

• Free block organization: How do we keep track
of free blocks?

– Common approach: “free list” i.e., linked list of
descriptors of free blocks

– Multiple strategies to sort the free list
– For space efficiency, the free list is stored within

the free space!

– (There are also other approaches/data structures
beyond free lists, e.g., balanced trees)

13

Important design decisions (3/5)

• Placement: How do we choose an appropriate
free block in which to place a newly allocated
block?
– Placement strategies have a major impact on

external fragmentation

– We will study several examples soon
• (best fit, first fit, …)

– Ideally: put block where it will not cause fragmentation
later

• Impossible to guarantee in general: requires knowledge
about the future

14

Important design decisions (4/5)

• Splitting: After we place a newly allocated block in
some free block, what do we do with the remainder of
the block?

 Two choices:
– Keep the remainder within the chosen block

• Simple, fast
• but introduces more internal fragmentation

– Split the chosen block in two and insert the
remainder block in the free list

• Better with respect to internal fragmentation (less wasted
space)

• … But requires more work (and thus more time), which may
be wasted if most remainder blocks are useless (too small)

15

Important design decisions (5/5)

• Coalescing: What do we do with a block that has just
been freed?
– The adjacent blocks may be free
– Coalescing the newly freed block with the adjacent free block(s)

yields a larger free block

– This helps avoiding “false external fragmentation”

– Different strategies:
• Immediate coalescing: systematic attempt whenever a block is

freed
– This may sometimes work “too well”

• Deferred: only on some occasion (e.g., when we are running out of
space) or periodically

16

Impossible to “solve” fragmentation

• If you read research/technical papers to find the best allocator
– All discussions revolve around trade-offs
– Because there cannot be a best allocator

• Theoretical result
– For any possible allocation algorithm, there exists streams of

allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation

• How much fragmentation should we tolerate?
– Let M = bytes of live data, nmin = smallest allocation size, nmax = largest

allocation size
– How much gross memory required?
– Bad allocator: M . (nmax / nmin)

• (uses maximum size for any size)
– Good allocator: ~ M . log(nmax / nmin)

18

Pathological example

• Example: Given allocation of 7 20-byte blocks

– What is a bad stream of frees and then allocates?
– Free every one block out of two, then alloc 21 bytes

• Next: we will study two allocators (placement strategies)
that, in practice, work pretty well: “best fit” and “first fit”

20

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

21

Best fit

• Placement strategy: minimize fragmentation by allocating
space from block that leaves smallest fragment
– Data structure: heap is a list of free blocks, each has a header holding

block size and pointer to next

– Code: Search free list for block closest in size to the request (exact
match is ideal)

– During free, (usually) coalesce adjacent blocks

• Problem: Sawdust
– Remainder so small that, over time, we are left with “sawdust”

everywhere

• Implementation? (go through the whole list? maintain sorted list?)

23

First fit

• Strategy: pick the first block that fits
– Data structure: free list
– Code: scan list, take the first one
– Implementation: Multiple strategies for sorting the free list: LIFO,

FIFO or by address

• LIFO: put free block on front of list
– Simple but causes higher fragmentation (see details on next slide)
– Potentially good for cache locality

• Address sort: order free blocks by address
– Makes coalescing easy (just check if next block is free)
– Also preserves empty/idle space (locality good when paging)

• FIFO: put free block at end of list
26

First fit: Nuances

• First fit sorted by address order, in practice:
– Blocks at front preferentially split, ones at back only split when no larger

one found before them
– Result? Seems to roughly sort free list by size
– So? Makes first fit operationally similar to best fit: a first fit of a sorted list

= best fit!

• Problem: sawdust at beginning of the list
– Sorting of list forces a large request to skip over many small blocks.

• Suppose memory has free blocks:
– If allocation operations are 10 then 20, best fit wins
– When is first fit better than best fit?
– Suppose allocation operations are 8, 12, 12. Then first fit wins

29

Some other placement strategies

• Worse fit
– Strategy: fight against sawdust by splitting block to maximize

leftover size
– However, seems to ensure that there are no large blocks

• Next fit
– Strategy: use first fit, but remember where we found the last

thing and start searching from there
– Seems like a good idea, but tends to break down entire list

32

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

34

Known patterns of real programs

• So far, we have treated programs as black boxes
• Most real programs exhibit 1 or 2 (or all 3) of the following patterns

of alloc/dealloc:
– Ramps: accumulate data monotonically over time

– Peaks: allocate many objects, use briefly, then free all

– Plateaus: allocate many objects, use for a long time

35

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

40

Beyond simple free lists [Advanced]

• We will study a few examples of other
approaches:
– Segregated lists
– Slab caches
– Buddy allocation

41

Fighting fragmentation
Exploiting ordering and size dependencies [Advanced]

• Segregation = reduced fragmentation
– Allocated at same time ~ freed at same time
– Different type ~ freed at different time

• Implementation observations
– Programs allocate small number of different sizes
– Fragmentation at peak use is more important than at low
– Most allocations are small (< 10 words)
– Work done with allocated memory increases with size
– Implications?

42

Segregated List (Seglist) Allocators [Advanced]

• Each size class of blocks has its own free list

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size

1-2

3

4

5-8

9-inf

44

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

Slab allocation [Advanced]

• Remember what we told earlier : if all requests have the same
size, then no fragmentation

• The kernel allocates many instances of the same structures
– E.g., a 1.7 kB task_struct for every process on the system
– And often needs contiguous physical memory

• Slab allocation optimizes for this case:
– A slab is multiple pages of contiguous physical memory
– A cache contains one or more slabs
– Each cache stores only one kind of object (fixed size)

• Each slab is full, empty or partial
• Example: need new task_struct?

– Look in the task_struct cache
– If there is a partial slab, pick free task_struct in that
– Else use empty, or may need to allocate new slab for cache

• Advantages: speed and no internal fragmentation [Bonwick]

47

Buddy allocation [Advanced]

• A special form of segregated allocator

• Here we only discuss the most common type of buddy
system: binary buddies

• Relies on specific rules to make management faster:
– Rounds up all allocation sizes to powers of 2
– Imposes specific rules/restrictions on splitting/coalescing

procedures
– Fast but may result in heavy internal fragmentation

48

Dynamic memory management
Recap

• (External) Fragmentation is caused by:
– Size heterogeneity
– Isolated deaths
– Time-varying behavior

• Allocator should try to:
– Exploit memory patterns
– Be evaluated under real workloads
– Have smart and efficient (in space and time) implementation

49

Summary of Key Allocator Policies
• Placement policy:

– First-fit, next-fit, best-fit, etc.
– Trades off lower throughput for less fragmentation
– Interesting observation: segregated free lists approximate a

best fit placement policy without having to search entire free list

• Splitting policy:
– When do we go ahead and split free blocks?
– How much internal fragmentation are we willing to tolerate?

• Coalescing policy:
– Immediate coalescing: coalesce each time free() is called
– Deferred coalescing: try to improve performance of free() by

deferring coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc()
• Coalesce when the amount of external fragmentation reaches some

threshold
50

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

Outline

• Introduction
– Motivation
– Fragmentation

• How to implement a memory allocator?
– Key design decisions
– A comparative study of several simple approaches
– Known patterns of real programs
– Some other designs

• Implicit memory management (garbage collection)

51

Implicit Memory Management:
Garbage Collection
• Garbage collection:

– Automatic reclamation of heap-allocated storage
– The application never has to free

• Avoids many memory management bugs
– Examples: double free bugs, some forms of dangling pointers, some forms

of memory leaks
• … but not all of them
• Usually yields lower performance than manual memory management

• Common in many languages
– Functional languages (e.g., Lisp, ML)
– Scripting languages (e.g., Perl)
– Modern object-oriented languages (e.g., Java)

• Variants (“conservative” garbage collectors) exist for C and C++
– However, cannot necessarily collect all garbage

52

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

Garbage collection

• Main principle: How does the memory manager
know when a memory block can be freed?

– In general we cannot know what is going to be used
in the future since it depends on conditionals

– But we can tell that certain blocks cannot be used if
there are no pointers to them

– A (dynamically allocated) memory block becomes
garbage (i.e., useless) when it cannot be reached
anymore by the application

53

Garbage collection (continued)

• Assumptions
– Pointers (i.e., memory addresses) can be distinguished from

other types of variables
– A pointer can only point to the beginning of a memory block (i.e.,

not to the middle of a block)
– A pointer cannot be “hidden” in another data type

• Languages such as C and C++ do not comply with the
above assumptions
– But some restricted forms of garbage collection can nonetheless

be implemented with these languages

54

Tracing garbage collectors
Memory as a Graph
• We view memory as a directed graph

– Each block is a node in the graph
– Each pointer is an edge in the graph
– Locations not in the heap that contain pointers into the heap are called

root nodes (e.g., registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (not needed by the application)

(a
da

pt
ed

 fr
om

 th
e

fo
llo

w
in

g
so

ur
ce

: C
ar

ne
gi

e
M

el
lo

n
U

ni
ve

rs
ity

 –
 1

5-
21

3/
18

-2
43

 c
la

ss
)

55

Garbage collection algorithms (1/2)

• Tracing collectors (example: Mark-and-sweep)
– Usually triggered when heap runs out of free space
– Some important criteria

• Moving (a.k.a. “compacting”) versus non-moving
– Note that, in a safe language (e.g., Java), the runtime system

knows about all pointers
– So an object can be moved if all the related pointers are

updated accordingly
– Good: helpful for fighting fragmentation and improving locality
– Bad: performance impact of memory copies

• Stop-the-world versus incremental versus concurrent
– Different trade-offs depending on the requirements of programs

(interactivity/reactivity, need to reclaim memory fast, …)
• Precise versus conservative

– See previous discussions on C/C++
56

Garbage collection algorithms (2/2)

• Reference counting
– Another approach (different from tracing collectors)
– Each object has an internal field (“ref count”), which keeps tracks

of the current number of pointers to it
– The ref count is incremented when a pointer is set to this object
– The ref count is decremented when a pointer is set to another

object or destroyed
– The object can be reclaimed when the ref count reaches zero

– Pros
• No need to halt program when running collector
• Immediate reclamation of available memory

– Cons
• Need to update the ref counts (negative performance effects)
• Problems with circular data structures (leaks)

58

References

• Andrea & Remzi Arpaci-Dusseau. OSTEP textbook (http://www.ostep.org).
Chapters:
– “Memory API”
– “Free space management”

• [CSAPP (book)] Randall Bryant, David O’Hallaron. Computer Systems: A
Programmer’s Perspective. Pearson.
– See chapter on “Virtual memory”, section on “Dynamic memory allocation” (Also

covers garbage collection)

• [Wilson et al.] P. R. Wilson, M. R. Johnstone, M. Neely, D. Boles. Dynamic
Storage Allocation: A Survey and Critical Review. University of Texas at
Austin, 1995.

• [Bonwick] J. Bonwick. The Slab Allocator: An Object-Caching Kernel
Memory Allocator. Usenix Summer 1994 Technical Conference.

59

http://ostep.org

