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Dynamic memory allocation — Introduction (1)

 Almost every program uses it

— Gives very important functionality benefits
 Avoids statically specifying complex data structures
 Avoids static overprovisioning of memory
 Allows having data grow as a function of input size

— But can have a huge impact on performance

* A general principle, used at several levels of the
software stack:
— In the operating system kernel, to manage physical memory

— In the C library, to manage the heap, a specific zone within the
virtual memory of each process

— (And also possibly) within an application, to manage a big
chunk of virtual memory provided by the OS



Dynamic memory allocation — Introduction (2)

 Today’s focus: how to implement it

« Some interesting facts (on performance)

— Changing a few lines of code can have huge, non-obvious
impact on how well an allocator works (examples to come)

— Proven: impossible to construct an “always good” allocator

— Surprising result: after decades, memory management is still
poorly understood



Why is it hard?

 Must satisfy arbitrary sequence of alloc/free operations

« Easy without free:

— Set a pointer to the beginning of some big chunk of memory (“heap”)
and increment on each allocation

- heap (free memory)

allocation ]

current free position

- Problem: free creates holes (“fragmentation”). Result: lots of
free space but cannot satisfy request
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 Why can’t we just move everything to the left when needed?

— This requires to update memory references (and thus to know about the
semantics of data)




(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

External Fragmentation

 Occurs when there is enough aggregate heap
memory, but no single free block is large enough

pl = malloc (4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

p4 = malloc (6) Oops! (what would happen now?)



(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Internal Fragmentation

« For a given block, internal fragmentation occurs if

payload is smaller than block size

block
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« Caused by:

Internal
fragmentation

— overhead of maintaining heap data structures
 (e.g., memory footprint of metadata headers/footers)

— padding for alignment purposes

— explicit policy decisions
 (e.g., decision to return a big block to satisfy a small request,

in order to make the operation go faster)



More abstractly

What an allocator must do:
— Track which parts of memory are in use, and which parts are free
— lIdeally: no wasted space, no time overhead

What the allocator cannot do:
— Control order, number and size of the requested blocks

— Change user pointers (therefore, bad placement decisions are
permanent)
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The core fight: minimize fragmentation
— Application frees blocks in any order, creating holes in “heap”

— If holes are too small, future requests cannot be satisfied
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What is (external) fragmentation?

* Inability to use memory that is free

 Two factors required for external fragmentation

— Different lifetimes:
« If adjacent objects die at different times, then fragmentation
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« If they die at the same time, then no fragmentation

— Different sizes:

« If all requests have the same size, then no fragmentation
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« (As we will see later, in the context of virtual memory, paging relies
on this to remove external fragmentation)
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Important design decisions (1/5)

* Free block organization: How do we keep track of free
blocks?

 Placement: How do we choose an appropriate free
block in which to place a newly allocated block?

- Splitting: After we place a newly allocated block in
some free block, what do we do with the remainder of
the free block?

« Coalescing: What do we do with a block that has just
been freed?
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Important design decisions (2/5)

* Free block organization: How do we keep frack
of free blocks?

— Common approach: “free list” i.e., linked list of
descriptors of free blocks

— Multiple strategies to sort the free list

— For space efficiency, the free list is stored within
the free space!

— (There are also other approaches/data structures
beyond free lists, e.g., balanced trees)
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Important design decisions (3/5)

 Placement: How do we choose an appropriate
free block in which to place a newly allocated
block?

— Placement strategies have a major impact on
external fragmentation

— We will study several examples soon
 (best fit, first fit, ...)

— |deally: put block where it will not cause fragmentation
later

» Impossible to guarantee in general: requires knowledge

about the future
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Important design decisions (4/5)

o Splitting: After we place a newly allocated block in
some free block, what do we do with the remainder of

the block?

Two choices:

— Keep the remainder within the chosen block
« Simple, fast
* but introduces more internal fragmentation
— Split the chosen block in two and insert the
remainder block in the free list

» Better with respect to internal fragmentation (less wasted
space)

... But requires more work (and thus more time), which may
be wasted if most remainder blocks are useless (too small)
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Important design decisions (5/5)

« Coalescing: What do we do with a block that has just
been freed?

— The adjacent blocks may be free

— Coalescing the newly freed block with the adjacent free block(s)
yields a larger free block

— This helps avoiding “false external fragmentation”
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— Different strategies:

* Immediate coalescing: systematic attempt whenever a block is
freed
— This may sometimes work “too well”
« Deferred: only on some occasion (e.g., when we are running out of
space) or periodically
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Impossible to “solve” fragmentation

 |f you read research/technical papers to find the best allocator
— All discussions revolve around trade-offs
— Because there cannot be a best allocator

* Theoretical result

— For any possible allocation algorithm, there exists streams of
allocation and deallocation requests that defeat the allocator and
force it into severe fragmentation

 How much fragmentation should we tolerate?

— Let M = bytes of live data, n.,;, = smallest allocation size, n,,., = largest
allocation size

— How much gross memory required?
— Bad allocator: M . (N;ax/ Niin)

* (uses maximum size for any size)
— Good allocator: ~ M . log(Nyax/ Nmin)
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Pathological example

« Example: Given allocation of 7 20-byte blocks

— What is a bad stream of frees and then allocates?
— Free every one block out of two, then alloc 21 bytes

* Next: we will study two allocators (placement strategies)
that, in practice, work pretty well: “best fit" and “first fit”

21



Outline

* [ntroduction
— Motivation
— Fragmentation

 How to implement a memory allocator?
— Key design decisions
— A comparative study of several simple approaches
— Known patterns of real programs
— Some other designs

« Implicit memory management (garbage collection)

22



Best fit

- Placement strategy: minimize fragmentation by allocating
space from block that leaves smallest fragment

— Data structure: heap is a list of free blocks, each has a header holding
block size and pointer to next
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— Code:

>
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« Search free list for block closest in size to the request (exact match is ideal)
« During free, (usually) coalesce adjacent blocks

 Problem: Sawdust
— Remainder so small that, over time, we are left with “sawdust”

everywhere

« Implementation? (go through the whole list? maintain sorted list?)
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First fit

Strategy: pick the first block that fits
— Data structure: free list
— Code: scan list, take the first one

— Implementation: Multiple strategies for sorting the free list: LIFO,
FIFO or by address (see below)

LIFO: put free block on front of list
— Simple but causes higher fragmentation (see details on next slide)
— Potentially good for cache locality

Address sort: order free blocks by address
— Makes coalescing easy (just check if next block is free)
— Also preserves empty/idle space (locality good when paging)

FIFO: put free block at end of list
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Subtle pathology: LIFO first fit

* An example of the subtle impact of simple design
decisions

« LIFO first fit seems good:

— Put object on front of list (cheap), hope same size used again
(cheap + good locality)

« But has big problems for simple allocation patterns

— E.g., repeatedly intermix short-lived allocations of 2n bytes, with
long-lived allocations of (n+7) bytes

— Each time a large object is freed, a small chunk will be quickly
taken, leaving useless fragment. Pathological fragmentation
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First fit: Nuances

« First fit sorted by address order, in practice:

— Blocks at front preferentially split, ones at back only split when no larger
one found before them

— Result? Seems to roughly sort free list by size

— So? Makes first fit operationally similar to best fit: a first fit of a sorted list
= best fit!

* Problem: sawdust at beginning of the list
— Sorting of list forces a large request to skip over many small blocks.

« Suppose memory has free blocks: 20 I}15| >
— If allocation operations are 10 then 20, best fit wins
— When is first fit better than best fit?
— Suppose allocation operations are 8, 12, 12. Then first fit wins
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Some other placement strategies

« Worse fit

— Strategy: fight against sawdust by splitting block to maximize
leftover size

— However, seems to ensure that there are no large blocks

 Next fit

— Strategy: use first fit, but remember where we found the last
thing and start searching from there

— Seems like a good idea, but tends to break down entire list

33



Outline

* [ntroduction
— Motivation
— Fragmentation

 How to implement a memory allocator?
— Key design decisions
— A comparative study of several simple approaches
— Known patterns of real programs
— Some other designs

« Implicit memory management (garbage collection)

35



Known patterns of real programs

« So far, we have treated programs as black boxes

« Most real programs exhibit 1 or 2 (or all 3) of the following patterns
of alloc/dealloc:

— Ramps: accumulate data monotonically over time
A

by‘re S /

— Peaks: allocate many objects, use briefly, then free all

Y

— Plateaus: allocate many objects, use for a long time

ores |/ \

>

>
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Beyond simple free lists

* We will study a few examples of other
approaches:
— Segregated lists
— Slab caches
— Buddy allocation

42



Fighting fragmentation
Exploiting ordering and size dependencies

« Segregation = reduced fragmentation
— Allocated at same time ~ freed at same time
— Different type ~ freed at different time

[TTTTT T -—— [T
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* |Implementation observations
— Programs allocate small number of different sizes
— Fragmentation at peak use is more important than at low
— Most allocations are small (< 10 words)

— Work done with allocated memory increases with size
— Implications?

43



(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Segregated List (Seglist) Allocators

« Each size class of blocks has its own free list

\ 4

\ 4

l

1-2

9-inf _—

« Often have separate classes for each small size
« For larger sizes: One class for each two-power size
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Slab allocation

« Remember what we told earlier : if all requests have the same
size, then no fragmentation
 The kernel allocates many instances of the same structures
— E.g.,a 1.7 kB task_struct for every process on the system
— And often needs contiguous physical memory
« Slab allocation optimizes for this case:
— A slab is multiple pages of contiguous physical memory
— A cache contains one or more slabs
— Each cache stores only one kind of object (fixed size)
« Each slab is full, empty or partial

« Example: need new task_struct?
— Lookin the task struct cache
— If there is a partial slab, pick free task_struct in that
— Else use empty, or may need to allocate new slab for cache

« Advantages: speed and no internal fragmentation [Bonwick]
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Buddy allocation

* A special form of segregated allocator

 Here we only discuss the most common type of buddy
system: binary buddies

* Relies on specific rules to make management faster:
— Rounds up all allocation sizes to powers of 2

— Imposes specific rules/restrictions on splitting/coalescing
procedures

— Fast but may result in heavy internal fragmentation

49



Dynamic memory management
Recap

« (External) Fragmentation is caused by:
— Size heterogeneity
— Isolated deaths
— Time-varying behavior

« Allocator should try to:
— Exploit memory patterns
— Be evaluated under real workloads
— Have smart and efficient (in space and time) implementation

50



(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Summary of Key Allocator Policies

 Placement policy:
— First-fit, next-fit, best-fit, etc.
— Trades off lower throughput for less fragmentation

— Interesting observation: segregated free lists approximate a
best fit placement policy without having to search entire free list

« Splitting policy:
— When do we go ahead and split free blocks?
— How much internal fragmentation are we willing to tolerate?

« Coalescing policy:
— Immediate coalescing: coalesce each time free () is called

— Deferred coalescing: try to improve performance of £ree () by
deferring coalescing until needed. Examples:

» Coalesce as you scan the free list formalloc ()

» Coalesce when the amount of external fragmentation reaches some
threshold
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Implicit Memory Management:
Garbage Collection

« Garbage collection:
— Automatic reclamation of heap-allocated storage
— The application never has to free

« Avoids many memory management bugs

— Examples: double free bugs, some forms of dangling pointers, some forms
of memory leaks

* ... but not all of them
« Usually yields lower performance than manual memory management

« Common in many languages
— Functional languages (e.g., Lisp, ML)
— Scripting languages (e.g., Perl)
— Modern object-oriented languages (e.g., Java)
« Variants (“conservative” garbage collectors) exist for C and C++

— However, cannot necessarily collect all garbage
53



Garbage collection

* Main principle: How does the memory manager
know when a memory block can be freed?

— In general we cannot know what is going to be used
in the future since it depends on conditionals

— But we can tell that certain blocks cannot be used if
there are no pointers to them

— A (dynamically allocated) memory block becomes
garbage (i.e., useless) when it cannot be reached
anymore by the application
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Garbage collection (continued)

 Assumptions

— Pointers (i.e., memory addresses) can be distinguished from
other types of variables

— A pointer can only point to the beginning of a memory block (i.e.,
not to the middle of a block)

— A pointer cannot be “hidden” in another data type

« Languages such as C and C++ do not comply with the
above assumptions

— But some restricted forms of garbage collection can nonetheless
be implemented with these languages
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Tracing garbage collectors
Memory as a Graph

We view memory as a directed graph
— Each block is a node in the graph
— Each pointer is an edge in the graph

— Locations not in the heap that contain pointers into the heap are called
root nodes (e.g., registers, locations on the stack, global variables)

Root nodes O O O
\

-
A
O
¥30<

O reachable

Not-reachable
(garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (not needed by the application) 56



Garbage collection algorithms (1/2)

* Tracing collectors (example: Mark-and-sweep)
— Usually triggered when heap runs out of free space

— Some important criteria

* Moving (a.k.a. “compacting”) versus non-moving

— Note that, in a safe language (e.g., Java), the runtime system
knows about all pointers

— So an object can be moved if all the related pointers are
updated accordingly

— Good: helpful for fighting fragmentation and improving locality
— Bad: performance impact of memory copies
« Stop-the-world versus incremental versus concurrent

— Different trade-offs depending on the requirements of programs
(interactivity/reactivity, need to reclaim memory fast, ...)

* Precise versus conservative

— See previous discussions on C/C++
57



Garbage collection algorithms (2/2)

 Reference counting

Another approach (different from tracing collectors)

Each object has an internal field (“ref count”), which keeps tracks
of the current number of pointers to it

The ref count is incremented when a pointer is set to this object

The ref count is decremented when a pointer is set to another
object or destroyed

The object can be reclaimed when the ref count reaches zero

Pros

* No need to halt program when running collector
* Immediate reclamation of available memory

Cons
« Need to update the ref counts (negative performance effects)
« Problems with circular data structures (leaks)
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