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Introduction (continued)
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache

 Definition: Computer memory with short access
time used for the storage of frequently or
recently used instructions or data



(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache

Memory

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”
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Data is copied in block-sized
10 transfer units
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache 8 9 14 3 .
Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
0000000000000 OC®OCOOOS
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

General Cache Concepts

Cache

Memory

- Miss

Request: 12 Data in block b is needed
Block b is not in cache:
8 12 14 3 .
Miss!
Block b is fetched from
12 Request: 12
memory
N > Block b is stored in cache
0 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache Performance Metrics
« Miss Rate

— Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate

e Hit Time
— Time to deliver a line in the cache to the processor
* includes time to determine whether the line is in the cache

* Miss Penalty

— Additional time required because of a miss
« typically 50-200 cycles for main memory (Trend: increasing!)
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache Performance Metrics (continued)

» Typical numbers for a CPU cache

— Miss Rate

« 3-10% for L1
« can be quite small (e.g., < 1%) for L2, depending on size, etc.

— Hit Time
« 1-2 clock cycle for L1
« 5-20 clock cycles for L2

— Miss Penalty

« typically 50-200 cycles for main memory (Trend: increasing!)
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Lets think about those numbers

* Huge difference between a hit and a miss
— Could be 100x, if just L1 and main memory

* Would you believe 99% hits is twice as good as 97%?

— Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

— Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit rate”
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Types of Cache Misses

 Cold (compulsory) miss
— Occurs on first access to a block

 Conflict miss
— Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots
* e.g., block i must be placed in slot (i mod 4)

— Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

* e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

« Capacity miss

— Occurs when the set of active cache blocks (working set) is
larger than the cache
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Why Caches Work

Locality: Programs tend to use data and instructions
with addresses near or equal to those they have

used recently

Temporal locality:

block
— Recently referenced items are likely >
to be referenced again in the near future
Spatial locality: block

— Items with nearby addresses tend
to be referenced close together in time
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Example: Locality?

sum = 0;

for (1 = 0; i < n; i++)
sum += a[i];

return sum;

 Data:

— Temporal: sum referenced in each iteration
— Spatial: array a[] accessed in stride-1 pattern

* [nstructions:
— Temporal: cycle through loop repeatedly
— Spatial: reference instructions in sequence

« Being able to assess the locality of code is a crucial
skill for a programmer
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(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Memory Hierarchies

« Some fundamental and enduring properties of
hardware and software systems:

— Faster storage technologies almost always cost more per byte
and have lower capacity

— The gaps between memory technology speeds are widening
« True of registers «— DRAM, DRAM « disk, etc.

— Well-written programs tend to exhibit good locality

* These properties complement each other beautifully

 They suggest an approach for organizing memory
and storage systems known as a memory hierarchy
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The memory hierarchy

A

Smaller,
faster,
costlier

per byte

Larger,
slower,
cheaper
per byte

v

registers CPU registers hold words retrieved from
L1 cache

on-chip L1
cache (SRAM) L1 cache holds cache lines retrieved from
L2 cache

on-chip or off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved
from main memory

main memory

(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

. Local disks hold files
(local disks)

retrieved from disks on
remote network servers

remote secondary storage
(tapes, distributed file systems, Web servers)

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)
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Examples of caches in the hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 8-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB O | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware+OS

Buffer cache Parts of files Main memory 100 | OS

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Source : R. Bryant,
D. O’Hallaron.
CSAPP 2" edition
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The memory hierarchy - Trends
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The memory hierarchy — An analogy

Memory layer Access latency | Analogy 1 Analogy 2
CPU register 1 cycle ~0.3 ns 1s Your brain
L1 cache 0.9 ns 3s This room
L2 cache 2.8 ns Os This floor
L3 cache 12.9 ns 43 s This building
Main memory 120 ns 6 minutes This campus
Solid state disk 50-150 us 2-6 days ]
distance/analogy
Hard disk drive 1-10 ms 1-12 months depends on the
(HDD) vehicle that you
Main memory of a | ~100 ms 1 century —|__consider ...
remote server
(over the Internet)
Optical storage seconds Several millennia
(DVDs) and tapes _

(Inspired by presentations by Jim Gray, Brendan Gregg and Jeff Antwood.
http://blog.codinghorror.com/the-infinite-space-between-words/). 26
See also: https://qist.github.com/hellerbarde/28433754#file-latency humanized-markdown
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The memory hierarchy — yet another summary (1/2)

L1 cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock
Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network

Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter

Read 1 MB sequentially from SSD*

Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

e Sources:

— https://gist.github.com/jboner/2841832

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

— http://i.imgur.com/kOt1e.png
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The memory hierarchy — yet another summary (2/2)
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https://colin-scott.github.io/personal_website/research/interactive_latency.html

Summary

« Computers are built with a memory hierarchy

Registers, multiple levels of cache, main memory

Data is brought in bulk (cache line) from a lower level (slower,
cheaper, bigger) to a higher level

When the cache is full, we need a policy to decide what should
stay in cache and what should be replaced
Hopefully the data brought in a cache line is reused soon
 Temporal locality
« Spatial locality

Programs must be aware of the memory hierarchy (at least to
some extent)
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Some advanced details & recent changes
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The memory hierarchy is (deeply) changing

* Non uniform memory access times (NUMA)
* Non volatile memory (NVM)

* High-bandwidth memory (HBM)

* Pooled / far / disaggregated memory

 Bonus: Some additional numbers
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NUMA: Non uniform memory access times

« Most multiprocessor architectures nowadays have a distributed

memory topology which results in non-uniform memory latencies
(NUMA) for accessing DRAM addresses (and also I/O devices)

DRAM CPU CPU DRAM 110
A | Memory | 1 CPU 2 | Memory | B Controller
Bus ?nter onnect Bus “1/O Hub”
‘." .~ P .-‘H“ ......... v
e S
CPU
CPU Interconnect CP
DRAM 1 ZU DRAM
Memory P
Bus QPI
CPU CPU
DRAM 3 4 DRAM
110
Controller
“I/O Hub”

(source: B. Gregg. Systems Performance — 2"? edition. Pearson. 2020.)



Non volatile memory (1/5)

Emerging technology: Non Volatile Memory (NVM)

* Also known as “Storage Class Memory” (SCM) or
“Persistent Memory” (PM or Pmem)

 Like traditional RAM:

— Fast
— Directly accessible by the CPUs, at byte-level granularity

« Like disks:
— Cheap cost per byte, high storage density
— No energy consumption when idle

— Persistent
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Non volatile memory (2/5)

NVM: Various physical technologies

Technology | Read latency | Write latency

DRAM 15 ns 15 ns 959
(baseline)

PCM 50 ns 500 ns Medium $3
ReRAM 10 ns 50 ns High $559
STT-MRAM 10 ns 90 ns Low $59
CNT <50 ns <50 ns High $55

(source: M. Seltzer et al. An NVM Carol. ICDE 2018.)
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Non volatile memory (3/5)

An example: Intel Optane DC Persistent Memory

Property DRAM Intel PM
Sequential read latency (ns) 81 169 (2.08%)
Random read latency (ns) 81 305 (3.76X)
Store + flush + fence (ns) 86 91 (1.05X%)
Read bandwidth (GB/s) 120 39.4 (0.33%)
Write bandwidth (GB/s) 80 13.9 (0.17X)

Table 2. PM Performance. The table shows performance

characteristics of DRAM, PM and the ratio of PM/DRAM, as
reported by Izraelevitz et al. [18].

Sources:
R. Kadekodi et al. SplitFS: Reducing Software Overhead in File Systems for

Persistent Memory. SOSP 2019.

J. lzraelevitz et al. Basic Performance Measurements of the Intel Optane
DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
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Non volatile memory (4/5)

* Volatile Memory
* Load/Store Instructions

* Cache Line Granularity

* Non-Volatile Storage “ =~~~ ~ "7

* Load/Store Instructions

* Cache Line Granularity ==/

* Non-Volatile Storage

NAND SSD

* /O Commands
* Bock Granularity

Hard Disk Drives (HDD)

Tape

(*) See vendor specifications

(source: S. Scargall.

Capacily

Programming Persistent Memory. Apress. 2020)
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Non volatile memory (5/5)

 NVM technology may become mainstream ...

« What will be the impact of NVM on:

— The hardware memory hierarchy?
— The software stack?
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HBMM: High-bandwidth main memory (1/2)

* Some use cases have very demanding
requirements in terms of memory bandwidth.

— Examples: GPUs, High-speed networks

« Traditional DRAM technologies cannot handle
such high throughput.

* New HBMM (a.k.a “HBM”) technologies offer
another trade-off:
— Higher latencies but higher throughput
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HBMM: High-bandwidth main memory (2/2)

Three Types of Memory

Size: TBs

Capacity: Flash  Latency: 100ps
A Bandwidth:10s GB/s

size: 100s GB /\ Size: 10s GB

Latency: 100ns . Latency: 300ns
Bandwideh: 50Ge/s  Latency: DDR Bandwidth: HBM  Bandwidth: 800GE/s

(source: P. Levis. It's the end of DRAM as we know it. [IETF ANRW July 2023.)
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Pooled / far / disaggregated memory (1/2)

 Recent & emerging hardware interconnect technologies
(such as the CXL standard) are enabling new memory
topologies and use cases.

* |In particular, they facilitate the access of “remote’/"far”
main memory:
— Memory available in another (nearby) server

— (Extensible) Pool of physical memory shared between
several servers

* This enables more flexible and efficient usage of
memory resources (and possibly data sharing)
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Pooled / far / disaggregated memory (2/2)

Attached [ Register 2&)\)-208
to CPU _| Cache \1-40ns
Main 0-140
CPU _ / Memory e

Independent\?f CXL-Memory *.170-250ns

Network >/ NVM "\{00-400ns
Attache Z 2-4pus
Disaggregated Memory \

S/ SSD N\ 0-40ms

/ HDD \3-10ms

Figure 2: Latency characteristics of memory technologies.

(source: H. Al-Maruf. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. ASPLOS 2023.)
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More generally:
System events and their latencies

| Event ||Latency Range|
| Nanosecond events |
Register access [Lev09] 0.4ns
L1 cache hit [Lev09] Ins
Branch mispredict [Lev09] 3ns
L2 cache hit [Lev09] 4ns
L3 cache hit [Lev09] 12ns-40ns
DRAM access [Lev09] 100ns
Switch Layer 1 [Exal8a] 2.4ns-4.6ns
Switch Layer 2 (cut-through) [Pao10; Neta] 330ns-500ns
PClIe Interconnect [NAZ*18] 400ns-900ns
Im vacuum 3.3ns
Im copper 4.3ns
1m fibre 4.9ns
Microsecond events |
NIC [Exal8b] 880ns-1.2us
Switch Layer 2 (store-and-forward) [Netb] <4us
Data centre network propagation delay [MLD*15] 1us-10us
Intel Optane memory access [Int18e] <10us
NVMe SSD /0 [Int18d] 18us-77us
SATA SSD I/O [Int18c] 36us-37us
Millisecond events |
HDD 1/0 [AA15] 6ms-13.2ms
London-San Francisco RTT 152ms

(Source: D. A. Popescu. Latency-driven performance in data centres. 2019.)
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