The memory hierarchy

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:

— Arnaud Legrand, No€el De Palma, Sacha Krakowiak

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus
PUschel (Carnegie Mellon University)

« Textbook: Randall Bryant, David O’Hallaron. Computer

Systems: A Programmer’s Perspective, Prentice Hall. See
chapter on “memory hierarchy”.

« CS 15-213/18-243 classes (many slides/figures directly adapted
from these classes)

Intfroduction

Volatile memory

Processor

Main memory

reqgisters

A

v

(DRAM)

Y
~

Secondary

Bigger, slower, cheaper

A

v

storage

(disk)

—

Introduction (continued)

Volatile memory

4 kB

N
~

Secondary

v

Frocessor .88 [Gache |.54B| Main memory
_ S) (DRAM)
registers (SRAM)
Bigger, slower, cheaper
Registers Cache DRAM
Capacity ~100-200 B ~32kB-12MB ~ GBs
Access time 0-1ns 2-10 ns 40 ns
Cost - 60 $/MB 0,06 $/MB
Size of 4-8 Bytes 32-64 B 4-8 kB

transfer unit

A

storage
(disk)

Disk
~ TBs
3 ms

0,0003 $/MB

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache

 Definition: Computer memory with short access
time used for the storage of frequently or
recently used instructions or data

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache

Memory

General Cache Mechanics

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
0 1 2 3
4 5 6 7/
3 9 10 11
12 13 14 15

10

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache 8 9 14 3 .
Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
0000000000000 OC®OCOOOS

11

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

General Cache Concepts

Cache

Memory

- Miss

Request: 12 Data in block b is needed
Block b is not in cache:
8 12 14 3 .
Miss!
Block b is fetched from
12 Request: 12
memory
N > Block b is stored in cache
0 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

12

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache Performance Metrics
« Miss Rate

— Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate

e Hit Time
— Time to deliver a line in the cache to the processor
* includes time to determine whether the line is in the cache

* Miss Penalty

— Additional time required because of a miss
« typically 50-200 cycles for main memory (Trend: increasing!)

13

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Cache Performance Metrics (continued)

» Typical numbers for a CPU cache

— Miss Rate

« 3-10% for L1
« can be quite small (e.g., < 1%) for L2, depending on size, etc.

— Hit Time
« 1-2 clock cycle for L1
« 5-20 clock cycles for L2

— Miss Penalty

« typically 50-200 cycles for main memory (Trend: increasing!)

14

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Lets think about those numbers

* Huge difference between a hit and a miss
— Could be 100x, if just L1 and main memory

* Would you believe 99% hits is twice as good as 97%?

— Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

— Average access time:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

* This is why “miss rate” is used instead of “hit rate”

15

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Types of Cache Misses

 Cold (compulsory) miss
— Occurs on first access to a block

 Conflict miss
— Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots
* e.g., block i must be placed in slot (i mod 4)

— Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot

* e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

« Capacity miss

— Occurs when the set of active cache blocks (working set) is
larger than the cache

16

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Why Caches Work

Locality: Programs tend to use data and instructions
with addresses near or equal to those they have

used recently

Temporal locality:

block
— Recently referenced items are likely >
to be referenced again in the near future
Spatial locality: block

— Items with nearby addresses tend
to be referenced close together in time

17

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Example: Locality?

sum = 0;

for (1 = 0; i < n; i++)
sum += a[i];

return sum;

 Data:

— Temporal: sum referenced in each iteration
— Spatial: array a[] accessed in stride-1 pattern

* [nstructions:
— Temporal: cycle through loop repeatedly
— Spatial: reference instructions in sequence

« Being able to assess the locality of code is a crucial
skill for a programmer

18

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

Memory Hierarchies

« Some fundamental and enduring properties of
hardware and software systems:

— Faster storage technologies almost always cost more per byte
and have lower capacity

— The gaps between memory technology speeds are widening
« True of registers «— DRAM, DRAM « disk, etc.

— Well-written programs tend to exhibit good locality

* These properties complement each other beautifully

 They suggest an approach for organizing memory
and storage systems known as a memory hierarchy

22

The memory hierarchy

A

Smaller,
faster,
costlier

per byte

Larger,
slower,
cheaper
per byte

v

registers CPU registers hold words retrieved from
L1 cache

on-chip L1
cache (SRAM) L1 cache holds cache lines retrieved from
L2 cache

on-chip or off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved
from main memory

main memory

(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

. Local disks hold files
(local disks)

retrieved from disks on
remote network servers

remote secondary storage
(tapes, distributed file systems, Web servers)

(adapted from the following source: Carnegie Mellon University — 15-213/18-243 class)

23

Examples of caches in the hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By

Registers 8-byte words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB O | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block Off-Chip L2 10 | Hardware

Virtual Memory 4-KB page Main memory 100 | Hardware+OS

Buffer cache Parts of files Main memory 100 | OS

Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client

cache

Browser cache Web pages Local disk 10,000,000 | Web browser

Web cache Web pages Remote server disks 1,000,000,000 | Web proxy
server

Source : R. Bryant,
D. O’Hallaron.
CSAPP 2" edition

24

The memory hierarchy - Trends

100 000 000,0

10 000 000,0
1000 000,0
100 000,0
A
- 10 000,0 —o—Disk seek time
2 ——SSD access time
g 1000,0 —-DRAM access time
=

100.0 - ——SRAM access time
| . *.'\l\- —{1-CPU cycle time
10,0

M —O—Effective CPU cycle time
" \0<8<E*\ﬂ
0,1 O—=0 Source : R. Bryant,
D. O’Hallaron.

CSAPP 3rd edition

0,0 T T T T T T T 1
1985 1990 1995 2000 2003 2005 2010 2015

Year

25

The memory hierarchy — An analogy

Memory layer Access latency | Analogy 1 Analogy 2
CPU register 1 cycle ~0.3 ns 1s Your brain
L1 cache 0.9 ns 3s This room
L2 cache 2.8 ns Os This floor
L3 cache 12.9 ns 43 s This building
Main memory 120 ns 6 minutes This campus
Solid state disk 50-150 us 2-6 days]
distance/analogy
Hard disk drive 1-10 ms 1-12 months depends on the
(HDD) vehicle that you
Main memory of a | ~100 ms 1 century —|__consider ...
remote server
(over the Internet)
Optical storage seconds Several millennia
(DVDs) and tapes _

(Inspired by presentations by Jim Gray, Brendan Gregg and Jeff Antwood.
http://blog.codinghorror.com/the-infinite-space-between-words/). 26
See also: https://qist.github.com/hellerbarde/28433754#file-latency humanized-markdown

http://blog.codinghorror.com/the-infinite-space-between-words/
https://gist.github.com/hellerbarde/2843375

The memory hierarchy — yet another summary (1/2)

L1 cache reference
Branch mispredict
L2 cache reference
Mutex lock/unlock
Main memory reference

Compress 1K bytes with Zippy

Send 1K bytes over 1 Gbps network

Read 4K randomly from SSD*

Read 1 MB sequentially from memory
Round trip within same datacenter

Read 1 MB sequentially from SSD*

Disk seek

Read 1 MB sequentially from disk
Send packet CA->Netherlands->CA

e Sources:

— https://gist.github.com/jboner/2841832

0.5 ns

5 ns

7 ns

25 ns

100 ns

3,000 ns
10,000 ns
150,000 ns
250,000 ns
500,000 ns
1,000,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

— http://i.imgur.com/kOt1e.png

3

10
150
250
500
1,000

10,000

20,000
150,000

us
us
us
us
us
us

us

us
us

10

20
150

ms

ms

ms
ms

14x 1.1 cache

20x L2 cache, 200x L1 cache

~1GB/sec SSD

~1GB/sec SSD, 4X memory
20x datacenter roundtrip

80x memory, 20X SSD

27

https://gist.github.com/jboner/2841832
http://i.imgur.com/k0t1e.png

The memory hierarchy — yet another summary (2/2)

Latency Mumbers Everg Programmer Should Know

Hins
™ L1 cache reference: 8.5ns

[]|
M B EBranch mispredict: Sns
|

[] |

H M L2 cache reference! 7ns
[]|

|

EEEEN
EEEEN
HEE NN Mutex lock/unlock: 25ns
EEEEN
EEEEN

EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEN
H
EEEEEEEmmn - ¥ 199ns
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

e Sources:

M Main memory reference! 188 ns

EEEEN_
T T T Rl

Compress 1KE with Zippu: 3ps

N iaps

— https://gist.github.com/jboner/2841832

— http://i.imgur.com/kOt1e.png

— https://colin-scott.github.io/personal website/research/interactive

B Send 1KB over 1Gbps network: 18pus

EEN

B 530 randon read C16b/= 5303
EEE 158 ps

EEN

EEEEN

EEEEN

o mmmm Read 1MB sequentially
EEEEE from memory: 258 ps
EEEEN

EEEEN

EEEEN

EEEEN

EEEEN

BN NN N Round trip in same
BN NN N datacenter: S08ps
EEEEN
EEEEN
EEEEN
EEEEN

EEEEEEEEEN
AEEEEEEEEEN
EEEEEEEEEN
AEEEEEEEEN
LLL L L L L LN]
AEEEEEEEEEN
EEEEEEEEEN
AEEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

M Read 1MB sequentially
from 33D 1ms

EEEEN .
EEEEE Disk seek! 18ns

EEEEN

NN NN Read 1MB sequentially
HENENEN from disk: 28ns
EEEEN

EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
HEEENENENENENN Packet
HEEEENENNNN roundtrip
HEEEEEENENEENCA to
HEENENNENNNN Netherlands:
HEENEEEENEEEN 150ms
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN
EEEEEEEEEN

Source! httpsi//qist.github.com/ 2841832

latency.html 28

https://gist.github.com/jboner/2841832
http://i.imgur.com/k0t1e.png
https://colin-scott.github.io/personal_website/research/interactive_latency.html

Summary

« Computers are built with a memory hierarchy

Registers, multiple levels of cache, main memory

Data is brought in bulk (cache line) from a lower level (slower,
cheaper, bigger) to a higher level

When the cache is full, we need a policy to decide what should
stay in cache and what should be replaced
Hopefully the data brought in a cache line is reused soon
 Temporal locality
« Spatial locality

Programs must be aware of the memory hierarchy (at least to
some extent)

29

Some advanced details & recent changes

30

The memory hierarchy is (deeply) changing

* Non uniform memory access times (NUMA)
* Non volatile memory (NVM)

* High-bandwidth memory (HBM)

* Pooled / far / disaggregated memory

 Bonus: Some additional numbers

31

NUMA: Non uniform memory access times

« Most multiprocessor architectures nowadays have a distributed

memory topology which results in non-uniform memory latencies
(NUMA) for accessing DRAM addresses (and also I/O devices)

DRAM CPU CPU DRAM 110
A | Memory | 1 CPU 2 | Memory | B Controller
Bus ?nter onnect Bus “1/O Hub”
‘." .~ P .-‘H“ v
e S
CPU
CPU Interconnect CP
DRAM 1 ZU DRAM
Memory P
Bus QPI
CPU CPU
DRAM 3 4 DRAM
110
Controller
“I/O Hub”

(source: B. Gregg. Systems Performance — 2"? edition. Pearson. 2020.)

Non volatile memory (1/5)

Emerging technology: Non Volatile Memory (NVM)

* Also known as “Storage Class Memory” (SCM) or
“Persistent Memory” (PM or Pmem)

 Like traditional RAM:

— Fast
— Directly accessible by the CPUs, at byte-level granularity

« Like disks:
— Cheap cost per byte, high storage density
— No energy consumption when idle

— Persistent

33

Non volatile memory (2/5)

NVM: Various physical technologies

Technology | Read latency | Write latency

DRAM 15 ns 15 ns 959
(baseline)

PCM 50 ns 500 ns Medium $3
ReRAM 10 ns 50 ns High $559
STT-MRAM 10 ns 90 ns Low $59
CNT <50 ns <50 ns High $55

(source: M. Seltzer et al. An NVM Carol. ICDE 2018.)

34

Non volatile memory (3/5)

An example: Intel Optane DC Persistent Memory

Property DRAM Intel PM
Sequential read latency (ns) 81 169 (2.08%)
Random read latency (ns) 81 305 (3.76X)
Store + flush + fence (ns) 86 91 (1.05X%)
Read bandwidth (GB/s) 120 39.4 (0.33%)
Write bandwidth (GB/s) 80 13.9 (0.17X)

Table 2. PM Performance. The table shows performance

characteristics of DRAM, PM and the ratio of PM/DRAM, as
reported by Izraelevitz et al. [18].

Sources:
R. Kadekodi et al. SplitFS: Reducing Software Overhead in File Systems for

Persistent Memory. SOSP 2019.

J. lzraelevitz et al. Basic Performance Measurements of the Intel Optane
DC Persistent Memory Module. CoRR abs/1903.05714 (2019).

35

Non volatile memory (4/5)

* Volatile Memory
* Load/Store Instructions

* Cache Line Granularity

* Non-Volatile Storage “ =~~~ ~ "7

* Load/Store Instructions

* Cache Line Granularity ==/

* Non-Volatile Storage

NAND SSD

* /O Commands
* Bock Granularity

Hard Disk Drives (HDD)

Tape

(*) See vendor specifications

(source: S. Scargall.

Capacily

Programming Persistent Memory. Apress. 2020)

36

Non volatile memory (5/5)

 NVM technology may become mainstream ...

« What will be the impact of NVM on:

— The hardware memory hierarchy?
— The software stack?

38

HBMM: High-bandwidth main memory (1/2)

* Some use cases have very demanding
requirements in terms of memory bandwidth.

— Examples: GPUs, High-speed networks

« Traditional DRAM technologies cannot handle
such high throughput.

* New HBMM (a.k.a “HBM”) technologies offer
another trade-off:
— Higher latencies but higher throughput

40

HBMM: High-bandwidth main memory (2/2)

Three Types of Memory

Size: TBs

Capacity: Flash Latency: 100ps
A Bandwidth:10s GB/s

size: 100s GB /\ Size: 10s GB

Latency: 100ns . Latency: 300ns
Bandwideh: 50Ge/s Latency: DDR Bandwidth: HBM Bandwidth: 800GE/s

(source: P. Levis. It's the end of DRAM as we know it. [IETF ANRW July 2023.)

41

Pooled / far / disaggregated memory (1/2)

 Recent & emerging hardware interconnect technologies
(such as the CXL standard) are enabling new memory
topologies and use cases.

* |In particular, they facilitate the access of “remote’/"far”
main memory:
— Memory available in another (nearby) server

— (Extensible) Pool of physical memory shared between
several servers

* This enables more flexible and efficient usage of
memory resources (and possibly data sharing)

42

Pooled / far / disaggregated memory (2/2)

Attached [Register 2&)\)-208
to CPU _| Cache \1-40ns
Main 0-140
CPU _ / Memory e

Independent\?f CXL-Memory *.170-250ns

Network >/ NVM "\{00-400ns
Attache Z 2-4pus
Disaggregated Memory \

S/ SSD N\ 0-40ms

/ HDD \3-10ms

Figure 2: Latency characteristics of memory technologies.

(source: H. Al-Maruf. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. ASPLOS 2023.)

43

More generally:
System events and their latencies

| Event ||Latency Range|
| Nanosecond events |
Register access [Lev09] 0.4ns
L1 cache hit [Lev09] Ins
Branch mispredict [Lev09] 3ns
L2 cache hit [Lev09] 4ns
L3 cache hit [Lev09] 12ns-40ns
DRAM access [Lev09] 100ns
Switch Layer 1 [Exal8a] 2.4ns-4.6ns
Switch Layer 2 (cut-through) [Pao10; Neta] 330ns-500ns
PClIe Interconnect [NAZ*18] 400ns-900ns
Im vacuum 3.3ns
Im copper 4.3ns
1m fibre 4.9ns
Microsecond events |
NIC [Exal8b] 880ns-1.2us
Switch Layer 2 (store-and-forward) [Netb] <4us
Data centre network propagation delay [MLD*15] 1us-10us
Intel Optane memory access [Int18e] <10us
NVMe SSD /0 [Int18d] 18us-77us
SATA SSD I/O [Int18c] 36us-37us
Millisecond events |
HDD 1/0 [AA15] 6ms-13.2ms
London-San Francisco RTT 152ms

(Source: D. A. Popescu. Latency-driven performance in data centres. 2019.)

44

