
Threads

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (many slides/figures directly adapted from those of the CS140
class)

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus

Püschel (Carnegie Mellon University)
• Textbook: Computer Systems: A Programmer’s Perspective (2nd

Edition) a.k.a. “CSAPP”
• CS 15-213/18-243 classes (many slides/figures directly adapted

from these classes)
– Textbooks (Silberschatz et al., Tanenbaum)

2

Threads

• A thread is a schedulable execution context
– Program counter, stack, registers ...

• By default, a process uses only one thread
• But it is also possible to have a multi-threaded process

– Multiple threads running in the same memory address space
3

Why threads?

• Most popular abstraction for concurrency
– All threads in a process share memory and file descriptors
– A lighter-weight abstraction for communication than inter-process

communication mechanisms (e.g., pipes, sockets, files)
– Lower resource consumption: a process context requires more

resources (memory, initialization and context switching time) than a
thread context

• Allows a process to use multiple CPUs (parallel execution)

• Allows a program to overlap I/O and computation
– Do not block the whole process when only a part of it should be blocked
– E.g., a threaded Web server can handle several clients simultaneously

5

Thread package (pseudo) API

• tid thread_create (void (*fn)(void *), void *arg);
– Create a new thread, run fn with arg

• void thread_exit();
– Destroy current thread

• void thread_join(tid thread);
– Wait for thread thread to exit

• And also lots of support for synchronization (see next lectures)

• Some important design choices (details on next slides):

– A given thread package can provide either preemptive or non-
preemptive (a.k.a. cooperative) threads

– Kernel-level threads versus user-level threads
6

Preemptive vs. cooperative threads

• Preemptive threads
– A thread can be preempted at any time to allocate the CPU to

another execution context, e.g., another thread (from the same process)
or another process .

– Rely on time multiplexing, thanks to timer interrupts
– Multiple threads (within the same process) can run in parallel on

multiple CPUs.

• Cooperative threads
– Within a given process, at most a single thread is allowed to run at a

given point in time.
– Within a given process, a thread switch can only happen when:

• the thread explicitly releases the CPU (calls yield()or terminates)
• the thread issues a blocking syscall (e.g., for disk or network I/O)

– Note: parallel execution & preemption w.r.t. other processes remain
possible.

8

Preemptive vs. cooperative threads (continued)

• Discussion

– Preemptive threads cause/expose more concurrency bugs (studied in
upcoming lectures) because there are many more possible thread
interleavings)

• Cooperative threads provide a simpler programming model for concurrent
tasks

– Cooperative threads cannot take advantage of multiple CPUs

– Cooperative threads may let a “misbehaving” thread monopolize the
CPU … but only up to the CPU share of the enclosing process

– Before multiprocessor architectures became prevalent, many threading
implementations were cooperative

10

Kernel threads vs. user threads

• “Kernel threads” (kernel-managed threads)
– The kernel is aware that a process may encapsulate

several schedulable execution contexts.
– The kernel manages these execution contexts.

• “User threads” (user-managed threads)
– Such execution contexts are managed from a library

running in user level.
– The kernel is not aware of them, it only manages the

encapsulating process, with a single execution
context.

11

Kernel threads

• thread_create() is implemented as a system call

• Faster than full process creation but still relatively heavy-weight

13

Limitations of kernel-level threads

• Every thread operation must go through kernel
– Create, exit, join, synchronize or switch for any reason
– On a modern processor, a syscall takes (approx.) 100+ cycles,

while a function call takes 5 cycles
– Result: threads 10x-30x slower when implemented in kernel

• Heavier memory requirements
– E.g., each kernel thread requires a fixed-size stack within kernel

(in addition to its user-level stack)

• One-size-fits-all thread implementation
– Kernel threads must please all people
– Maybe you pay (time and space overhead) for fancy features

(priorities, etc.) that you do not need
15

User threads

• Thread management implemented in a user-level library
– One kernel-thread per process
– thread_create(), thread_exit(), ... are just library

functions

17

Implementing user-level threads (as a library) [Advanced]

• Allocate a new stack for each invocation of thread_create().

• Keep a queue of runnable threads.

• Replace some potentially blocking system calls (e.g., related to I/O:
read()/write()/etc.) with non-blocking version.
– If operation would block, switch and run different thread.

• Schedule periodic timer signal (setitimer() and SIGALRM).
– Switch to another thread upon arrival of Unix signal triggered by user-

defined timer (preemption).

20

Limitations of user-level threads

• Cannot take advantage of multiple CPUs.

• A blocking system call blocks all threads within the same
process.
– Some system calls can be replaced by non blocking ones (e.g., to read

from network connections).
– But, depending on the OS, this is not always possible for all potentially-

blocking system calls (e.g., for disk I/O).

• A page fault blocks all threads within the same process.
– (More on page faults in another lecture.)

• Possible deadlock if one thread blocks on another.
– May block entire process and make no progress.
– (More on deadlocks in another lecture.)

22

Another possible threading design:
user threads on (several) kernel threads

• User-level threads implemented on top of kernel-level threads
– Multiple kernel-level threads per process
– thread_create(), thread_exit() are still library functions

• Sometimes called “N:M threading” (or “M:N”) or “hybrid”
threading
– Have N user threads per M kernel threads
– (“simple” user-level threads are N:1 and “simple” kernel threads are 1:1)

23

Limitations of N:M threading

• Many of the same problems as N:1 threads
– Blocked threads, deadlock, ...

• Hard to keep the number of kernel threads the same as
available CPUs
– The kernel knows how many CPUs are available and also knows which

kernel-level threads are blocked … but tries to hide these things to
applications for transparency.

– So a user-level thread scheduler might think that a thread is running
while the underlying kernel thread is blocked

• The kernel does not know the relative importance of threads
– Might preempt kernel thread in which library holds important lock

25

Advanced details

Threads: behavior upon fork()/exec()

• What happens if one thread of a process calls fork()?
– Does the new process duplicate all threads? Or is the new

process single-threaded?
– Some Unix systems have chosen to have two versions of
fork()

– In general, only the calling thread is replicated in the child
process

• All of the other threads vanish in the child, without invoking thread-
specific cleanup handlers

• What happens if one thread of a process calls exec()?
– Generally, the program replaces the entire process, including all

threads
• Without invoking any thread-specific cleanup handler

27

Thread cancellation

• One may want to cancel a thread before it has completed
– Example: when multiple threads concurrently search for a given data

item in a database
– Or when you hit the stop button of a Web browser, all the threads in

charge of loading the code of the web page and the various images
should be cancelled

• Asynchronous cancellation
– One thread immediately terminates the target thread
– Main issue: what if resources have been allocated and/or the target

thread is in the midst of updating data shared with other threads?
– May lead to incoherent state

• Deferred cancellation
– The target thread periodically checks whether it should terminate, giving

it an opportunity to terminate itself in an orderly fashion
– Such points are called cancellation points 28

Signal handling

• Handling signals in a single-threaded program is straightforward
• In a multi-threaded program, who should receive the signal?

Several possibilities:
– Deliver the signal to the thread to which the signal applies (e.g.,

SIGSEGV)
– Deliver the signal to every thread in the process
– Deliver the signal to certain threads in the process
– Assign a specific thread to receive all signals for the process

• POSIX threads have the pthread_kill(pthread_t tid, int
signal) function

• In many Unix systems, the decision is usually made as follows:
– Only a single thread receives a given signal instance within a process
– If the signal is clearly related to a given thread, select this one

• E.g., in case of a hardware fault (like SIGSEGV), or a call to
pthread_kill()

• Otherwise, select an arbitrary thread within the process
29

Thread-specific data

• All threads share the data of the enclosing process.

• In some circumstances, each thread may need to have its own
copy of certain data.

• Most thread libraries provide some support for thread-specific data:
– POSIX Thread-specific data (a relatively complex API)
– “Thread local storage” (non-standard but simpler and implemented in

different Unix variants like Linux, FreeBSD and Solaris)

• Thread-local storage – example:
– Simply include the __thread specifier in the declaration of a global or

static variable
– Example: static __thread char buf[BUF_SIZE];

30

Thread pools

• A server application (for example, a Web server) could create a
thread to handle each client request … but this brings issues:
– Although it is cheaper than creating a process, creating a thread is

costly, especially regarding the request service time
– If there is no bound on the number of concurrently active threads, we

could exhaust the system resources (CPU, RAM) and cause thrashing

• Thread pools address these two above issues – Principle:
– Create a number of threads when the (server application) process starts

and place them into a pool where they wait for work
– When a server receives a request, it awakens a thread from the pool if

any available and waits otherwise
– When the thread has finished servicing the request, it returns to the

pool, waiting for more work

31

