Introduction to virtual memory
Segmentation

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
— Arnaud Legrand, Noél De Palma, Sacha Krakowiak

— David Mazieres (Stanford)
« (most slides/figures directly adapted from those of the CS140 class)

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus Puschel
(Carnegie Mellon University)
« Textbook: Computer Systems: A Programmer’s Perspective (2" Edition)

» CS 15-213/18-243 classes (some slides/figures directly adapted from these
classes)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

— Textbooks (Silberschatz et al., Tanenbaum)

Outline

* The need for virtual memory

* How to implement virtual memory?
— 1st attempt: Load-time linking
— 2"d attempt: Registers and MMU
— 3" attempt: Segmentation

Motivating example
Processes coexisting in memory

0x9000
0S
0x7000
ccC
El 0x4000
bochs/pintos
0x3000
emacs
0x0000

« Consider multiprogramming in physical memory
— What happens if one application needs to expand?

— What happens if one application needs more memory than what
is on the machine?

— What happens if pintos is buggy and writes to 0x71007?
— When does gcc have to know that it will run at 0x40007
— What if emacs is not using its whole memory range?

Issues in sharing physical memory

* Protection
— A bug in one process can corrupt memory in another
— How to prevent process A from trashing B’'s memory?
— How to prevent A from observing B’'s memory?

 Transparency
— A process should not require particular/fixed memory locations

— Processes often require large amount of contiguous memory (for stack,
large data structures, etc.)

 Resource exhaustion
— Programmers typically assume that a machine has “enough” memory
— The sum of sizes of all processes is often greater than physical memory

Introducing virtual memory

|s address
legal?
o
app. virtual address 2 __ Yes, phys. addr
0x30408 > MMU 0x92408 >
\ data memory
kernel
To fault handler No

- Give each program its own “virtual” address space
— At run time, redirect each load/store instruction to its actual memory
— ... So that the application does not care what physical memory it is using

« Enforce protection
— Prevent one application from messing with another’s memory

 Allow programs to see more memory than exists
— Somehow relocate some memory accesses to disk 5

Introducing virtual memory
Advantages

« Can re-locate program (code/data) while running
— Run partially in memory, partially on disk

* In many cases, most of the memory of a process is idle

(80/20 rU|e) gcc
B
kernel :

— Write idle part to disk until needed

— Let other processes use memory for idle part
— Analogy with CPU virtualization:

* When process not using CPU, switch
* When not using a physical page, switch it to another process

— Challenge: the virtual memory subsystem is an extra layer
« Could cause slowdown

emacs

kernel

Introducing virtual memory
How to implement it it?

We will consider several approaches.

ldea 1: Load-time linking

0S
static a.out
0x3000 O0x6000
\ a.out,
. jump 0x5000
0x1000

* Link as usual, but keep the list of memory references

* Fix up a process when it starts

— Determine where process will reside in memory
— Adjust all references within program (using addition)

* Problems
— How to enforce protection?
— How to move data during execution (after startup)?
— What if no contiguous free region fits program??

ldea 2: base + bound registers

 Introduce two special privileged (hardware) registers:

base and bound

* On each load/store:
— Compute phys. addr. = virt. addr. + base
— Check 0 < virt. addr. < bound, else trap to kernel

 How to move a process in memory?
— Change base register

« What happens on context switch?
— OS must reload/modify base and bound registers

10

Virtual memory
Definitions

Programs manipulate virtual (a.k.a. “logical”) addresses
The actual memory uses physical (a.k.a. “real”) addresses
Hardware uses a special component: Memory Management Unit
(MMU)

— Usually part of the CPU

— Accessed with privileged instructions

— Translates from virtual to physical addresses

— Provides a per-process view of the memory, called address space

Physical
virtual addrs addrs

CPU <_1_, , l .| memory

MMU

11

Address space

Virtual Address
View

0 -

MMU

Physical Address
View

12

Base+bound trade-offs

« Advantages
— Cheap to implement in hardware
— Cheap in terms of cycles: do add and compare in parallel

« Disadvantages

— Growing the memory of a process is expensive or Free space
Impossible pintos2
— No way to share code or data gcc
* (e.g., multiple copies of the same application and/or pintosl

multiple applications accessing the same file)

* One solution: Multiple segments
— E.g., separate code, stack and data segments

— Possibly multiple data segments per process
13

Segmentation

0x1000

0x3000

0x5000

0x6000

gcc

Text seg
r/o

Stack seg
r/w

Base&bound?

Real memory

0x2000

0x8000

0x6000

« Let processes have many base/bound registers
— Address space built from many segments
— Can share/protect memory on segment granularity

« Segment must be specified as part of virtual address

14

Segmentation mechanics

Virtual addr mem
31 T
Seg 1128

« Each process has a segment table

« Each virt. addr. (VA) indicates a segment and an offset
— Top bits of addr. select segment, low bits select offset
— Or segment selected implicitly by instruction or operand

« This means you need wider pointers (“far pointers”) to specify
segment

Segmentation example

Seqg base bounds rw '
0 0x4000 Ox6ff 10 virtual physical
1 0x0000 Ox4ff 11
2 0x3000 Oxfff 11 0x4000 0x4700
3 00
0x3000 0x4000
0x2000 g 0x3000
0x1500

0x0700 0x500
0x0000

« 2-bit segment number (18t digit), 12-bit offset (last 3
digits)
— Where is 0x02407 0x1108? 0x265c? 0x30027? 0x16007?

16

Segmentation trade-offs

« Advantages
— Multiple segments per process
— Allows sharing (how?)
— Does not need to store entire process in memory at any moment

« Disadvantages
— Requires translation hardware, which could limit performance
— N-byte segment needs N contiguous bytes of physical memory
— Makes fragmentation a real problem

19

Fragmentation

« Fragmentation: inability to use free memory

e Qvertime:

— Variable-sized pieces: many small holes (external fragmentation)
— Fixed-size pieces: no external holes, but force internal waste (internal

fragmentation)

Pintos

2

allocated

P
«

gcc

External
ta,r”””fragmentation

emacs

} Unused

(“internal
fragmentation”)

* In the next lecture, we will study a better solution for the virtual
memory implementation problem, which does not suffer from

fragmentation

20

