
Principles of Operating Systems
Virtual Memory – Segmentation

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2024

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


References

• These slides are adapted from the slides of Renaud Lachaize

• Chapters of Operating Systems: Three Easy Pieces
▶ Chater 15: Address Translation
▶ Chapter 16: Segmentation

2



Outline

• The need for virtual memory

• How to implement virtual memory?
– 1st attempt: Load-time linking
– 2nd attempt: Registers and MMU
– 3rd attempt: Segmentation

3



Motivating example
Processes coexisting in memory

• Consider multiprogramming in physical memory
– What happens if one application needs to expand?
– What happens if one application needs more memory than what 

is on the machine?
– What happens if pintos is buggy and writes to 0x7100?
– When does gcc have to know that it will run at 0x4000?
– What if emacs is not using its whole memory range?

4



Issues in sharing physical memory

• Protection
– A bug in one process can corrupt memory in another
– How to prevent process A from trashing B’s memory?
– How to prevent A from observing B’s memory?

• Transparency
– A process should not require particular/fixed memory locations
– Processes often require large amount of contiguous memory (for stack, 

large data structures, etc.)

• Resource exhaustion
– Programmers typically assume that a machine has “enough” memory
– The sum of sizes of all processes is often greater than physical memory

5



Introducing virtual memory
Goals

• Give each program its own “virtual” address space
– At run time, redirect each load/store instruction to its actual memory
– ... So that the application does not care what physical memory it is using

• Enforce protection
– Prevent one application from messing with another’s memory

• Allow programs to see more memory than exists
– Somehow relocate some memory accesses to disk 6



Introducing virtual memory
Advantages
• Can re-locate program (code/data) while running

– Run partially in memory, partially on disk
• In many cases, most of the memory of a process is idle 

(80/20 rule)

– Write idle part to disk until needed
– Let other processes use memory for idle part
– Analogy with CPU virtualization:

• When process not using CPU, switch
• When not using a physical page, switch it to another process

– Challenge: the virtual memory subsystem is an extra layer
• Could cause slowdown

7



Introducing virtual memory
How to implement it it?

We will consider several approaches.

8



Idea 2: base + bound registers

• Introduce two special privileged (hardware) registers: 
base and bound

• On each load/store:
– Compute phys. addr. = virt. addr. + base
– Check 0 ≤ virt. addr. < bound, else trap to kernel

• How to move a process in memory?
– Change base register

• What happens on context switch?
– OS must reload/modify base and bound registers 

10



Virtual memory
Definitions
• Programs manipulate virtual (a.k.a. “logical”) addresses
• The actual memory uses physical (a.k.a. “real”) addresses
• Hardware uses a special component: Memory Management Unit 

(MMU)
– Usually part of the CPU
– Accessed with privileged instructions
– Translates from virtual to physical addresses
– Provides a per-process view of the memory, called address space

11



Address space

12



Base+bound trade-offs

• Advantages
– Cheap to implement in hardware
– Cheap in terms of cycles: do add and compare in parallel

• Disadvantages
– Growing the memory of a process is expensive or 

impossible
– No way to share code or data

• (e.g., multiple copies of the same application and/or 
multiple applications accessing the same file)

• One solution: Multiple segments
– E.g., separate code, stack and data segments
– Possibly multiple data segments per process

13



Segmentation

• Let processes have many base/bound registers
– Address space built from many segments
– Can share/protect memory on segment granularity

• Segment must be specified as part of virtual address
14



Segmentation mechanics

• Each process has a segment table

• Each virt. addr. (VA) indicates a segment and an offset
– Top bits of addr. select segment, low bits select offset
– Or segment selected implicitly by instruction or operand

• This means you need wider pointers (“far pointers”) to specify 
segment 15



3



Segmentation example

• 2-bit segment number (1st digit), 12-bit offset (last 3 
digits)
– Where is 0x0240? 0x1108? 0x265c? 0x3002? 0x1600?

16



Segmentation trade-offs

• Advantages
– Multiple segments per process
– Allows sharing (how?)
– Does not need to store entire process in memory at any moment

• Disadvantages
– Requires translation hardware, which could limit performance
– N-byte segment needs N contiguous bytes of physical memory
– Makes fragmentation a real problem

19



Fragmentation

• Fragmentation: inability to use free memory
• Over time :

– Variable-sized pieces: many small holes (external fragmentation)
– Fixed-size pieces: no external holes, but force internal waste (internal 

fragmentation)

• In the next lecture, we will study a better solution for the virtual 
memory implementation problem, which does not suffer from 
fragmentation

20


