Principles of Operating Systems

Virtual Memory — Segmentation

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2024


mailto:thomas.ropars@univ-grenoble-alpes.fr

References

® These slides are adapted from the slides of Renaud Lachaize

® Chapters of Operating Systems: Three Easy Pieces

Chater 15: Address Translation
Chapter 16: Segmentation



Outline

* The need for virtual memory

* How to implement virtual memory?
— 1st attempt: Load-time linking
— 2" attempt: Registers and MMU
— 3 attempt: Segmentation



Motivating example
Processes coexisting in memory

0x9000

oS
0x7000

cc
J 0x4000

bochs/pintos .
0x3000
emacs

0x0000

» Consider multiprogramming in physical memory
— What happens if one application needs to expand?

What happens if one application needs more memory than what
is on the machine?

What happens if pintos is buggy and writes to 0x71007?
When does gcc have to know that it will run at 0x4000?
What if emacs is not using its whole memory range?



Issues in sharing physical memory

* Protection
— A bug in one process can corrupt memory in another
— How to prevent process A from trashing B’'s memory?
— How to prevent A from observing B’s memory?

» Transparency
— A process should not require particular/fixed memory locations

— Processes often require large amount of contiguous memory (for stack,
large data structures, etc.)

* Resource exhaustion
— Programmers typically assume that a machine has “enough” memory
— The sum of sizes of all processes is often greater than physical memory



Introducing virtual memory

Goals
Is address
legal?
o
app. virtual address °__ Yes, phys. addr

0x30408 0x92408
et U ——
\ data memory

kernel {
To fault handler No

+ Give each program its own “virtual” address space
— At run time, redirect each load/store instruction to its actual memory
— ... So that the application does not care what physical memory it is using

» Enforce protection
— Prevent one application from messing with another’'s memory

* Allow programs to see more memory than exists
— Somehow relocate some memory accesses to disk 6



Introducing virtual memory
Advantages

+ Can re-locate program (code/data) while running
— Run partially in memory, partially on disk

* In many cases, most of the memory of a process is idle

(80/20 rUle) gce emacs
P
kernel : kernel

Write idle part to disk until needed
Let other processes use memory for idle part
Analogy with CPU virtualization:
* When process not using CPU, switch
» When not using a physical page, switch it to another process

Challenge: the virtual memory subsystem is an extra layer
» Could cause slowdown



Introducing virtual memory
How to implement it it?

We will consider several approaches.



|dea 2: base + bound registers

Introduce two special privileged (hardware) registers:
base and bound

* On each load/store:
— Compute phys. addr. = virt. addr. + base
— Check 0 < virt. addr. < bound, else trap to kernel

* How to move a process in memory?
— Change base register

What happens on context switch?
— OS must reload/modify base and bound registers



Virtual memory
Definitions

Programs manipulate virtual (a.k.a. “logical”’) addresses
The actual memory uses physical (a.k.a. “real”) addresses

Hardware uses a special component: Memory Management Unit
(MMU)

Usually part of the CPU

Accessed with privileged instructions

Translates from virtual to physical addresses

— Provides a per-process view of the memory, called address space

Physical
virtual addrs addrs

memory

cPU MMU




Address space

Virtual Address
View

MMU

Physical Address
View




Base+bound trade-offs

+ Advantages
— Cheap to implement in hardware
— Cheap in terms of cycles: do add and compare in parallel

+ Disadvantages

— Growing the memory of a process is expensive or

impossible
— No way to share code or data gcc
* (e.g., multiple copies of the same application and/or pintosl

multiple applications accessing the same file)

* One solution: Multiple segments
— E.g., separate code, stack and data segments
— Possibly multiple data segments per process



Segmentation

0x1000

Text seg

r/o
0x3000

0x5000
Stack seg

r/w

0x6000

Baseé&bound?

Real memor

0x2000

0x8000

0x6000

» Let processes have many base/bound registers
— Address space built from many segments
— Can share/protect memory on segment granularity

+ Segment must be specified as part of virtual address



Segmentation mechanics

fault
Virtual addr

3

mem
0x100Q

Seg 128

seg

» Each process has a segment table

» Each virt. addr. (VA) indicates a segment and an offset
— Top bits of addr. select segment, low bits select offset
— Or segment selected implicitly by instruction or operand

 This means you need wider pointers (“far pointers”) to specify
segment 15



Segmentation example

Seq base bounds rw
0 0x4000 Ox6ff 10

1 0x0000 Ox4ff 11
2 0x3000 Oxfff 11
3 00

 2-bit segment number (15t digit), 12-bit offset (last 3
digits)
— Where is 0x0240?7 0x1108? 0x265c¢? 0x30027 0x16007?



Segmentation example

Seq base bounds rw .
0 0x4000 Ox6ff 10 virtual physical
1 0%0000 Ox4ff 11
2 0x3000 Oxfff 11 0x4000 0x4700
3 00
0x3000 0x4000
0x2000 0x3000

0x1500

0x0700
0x0000

 2-bit segment number (15t digit), 12-bit offset (last 3
digits)
— Where is 0x02407 0x1108? 0x265¢? 0x3002? 0x16007?



Segmentation trade-offs

+ Advantages
— Multiple segments per process
— Allows sharing (how?)
— Does not need to store entire process in memory at any moment

+ Disadvantages
— Requires translation hardware, which could limit performance
— N-byte segment needs N contiguous bytes of physical memory
— Makes fragmentation a real problem



Fragmentation

« Fragmentation: inability to use free memory

¢« Overtime:

— Variable-sized pieces: many small holes (external fragmentation)
— Fixed-size pieces: no external holes, but force internal waste (internal

fragmentation)

Pintos

292

allocated

————gExternal

/fraqmentation

} Unused

(“internal
fragmentation”)

* In the next lecture, we will study a better solution for the virtual
memory implementation problem, which does not suffer from

fragmentation

20



