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References

• These slides are adapted from the slides of Renaud Lachaize

• Chapters of Operating Systems: Three Easy Pieces
▶ Chapter 18: Introduction to Paging
▶ Chapter 19: Translation Lookaside Buffers
▶ Chapter 20: Advanced Page Tables
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Flashback
Remember the last lecture
• Virtual memory is required to enforce:

– Protection/isolation: a process should only mess with its own 
memory

– Transparency: memory references and size need to be 
dynamically adjusted ; give each process its own address space

– Resource exhaustion management: (efficiently) handle situations 
where there is not enough memory to fit all processes

• The MMU is here to help
– Hardware support for address translation

• Segmentation
– A first approach suffering from a significant drawback: 

fragmentation, caused by:
• Size heterogeneity
• Isolated deaths (lifecycle heterogeneity)
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Outline

• Basic principles for address translation

• Data structures

• Case study: x86 page translation (architected 
page tables)

• Making paging fast (TLB)

• Another example: MIPS (architected TLB)
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Paging

• Divide memory into fixed-size pages
• Map virtual pages to physical pages (a.k.a. “frames”)

– Each process has separate mapping configuration

• Allow OS to gain control on certain operations
– Write attempt to a read-only page triggers trap to OS kernel
– (Read or write) attempt to invalid page triggers trap to OS kernel
– OS can change mapping and resume application

• Other features sometimes found (discussed later)
– Hardware can set “accessed” and “dirty” bits
– Control page execute permission separately from read/write
– Control caching of page
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Paging trade-offs

• Eliminates external fragmentation
• Simplifies allocation, free, and backing storage (swap)
• Average internal fragmentation of 0.5 pages per 

segment
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Simplified allocation

• Allocate any physical page to any process
• Can store idle virtual pages on disk
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Paging data structures

• Pages are fixed size, e.g., 4 kB
– Least significant bits (e.g., 12 bits for 4kB-pages) of address 

form the page offset
– The most significant bits form the page number

• Each process has a page table (a.k.a. “paging 
structure”)
– Maps virtual page number (VPN) to physical page number (PPN)
– Also includes bits for protection, validity, etc.

• On memory access:
– Translate VPN to PPN, then add offset
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Paging data structures (continued)

12

In this example:
• We assume a (fixed) page size of 4 kB (4096 bytes)
• We consider an attempt to convert virtual address 

0x3128 into its corresponding physical address

What happens in the case of a read access? And for a write access?



A detailed example of hardware support for paging:
Paging on (Intel 32-bit) x86 processors

• Paging enabled by bits in control register (%cr0)
– Only privileged OS code can manipulate control registers

• Normally 4kB pages
– x86 uses 32-bit words => 4 GB of addressable memory
– offset: 12 bits / page index: 20 bits => flat page table = 4 MB per 

process (big!)
– Instead of a flat table, a hierarchical structure is used

• %cr3 register points to 4kB “page directory” (1 directory per process)
• Page directory (PD): 1024 PDEs (page directory entries)

– Each (valid) PDE contains the physical address of a “page table”
– PD index: 10 bits

• Page table (PT): 1024 PTEs (page table entries)
– Each (valid) PTE contains the physical address of a virtual 4kB page
– A page table covers (up to) 4 MB of virtual memory
– PT index: 10 bits
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x86 page translation
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Space savings with two-level paging structures
Example on x86 (1/2)

• Assume an address space with the following valid 
address ranges:
– Range 1: 0x00000000 to 0x00000FFF
– Range 2: 0x01000000 to 0x02003FFF

• How much space is required by the paging structure in 
the following setups?
– Setup 1: using a flat page table
– Setup 2: using  a two-level structure (i.e., with PD+PTs)
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Space savings with two-level paging structures
Example on x86 (2/2)
• Assume an address space with the following valid address ranges

– Range 1: 0x00000000 to 0x00000FFF
– Range 2: 0x01000000 to 0x02003FFF

• How much space required by paging structure? Answers:
– With flat page table: 4 MB (220 entries of 32 bits each)

– With PD+PTs: 28 kB
• 1 Page directory: 4 kB
• Page tables for range 1: 1 PT (4 kB)

– PT associated with PDE 0x0 
– Because the 10 most significant bits are the same for all addresses in range 1

• Page tables for range 2: 5 PTs (4 kB each)
– PTs associated with PDEs 0x4 to 0x8
– PT 0x4 for range 0x01000000 to 0x013FFFFF, PT 0x5 for range 0x01400000 to 

0x017FFFFF, PT 0x6 for range 0x01800000 to 0x01BFFFFF, PT 0x7 for range 
0x01C00000 to 0x01FFFFFF, PT 0x8 for range  0x02000000 to 0x02003FFF

– Note that some of the entries of PT 0x8 are not used (only 4 are used)
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Documentation about x86 paging

• Old Intel manual (simplest explanation): Intel 80386  
Programmer’s reference manual, 1987
– http://www.scs.stanford.edu/05au-cs240c/lab/i386/toc.htm
– http://www.scs.stanford.edu/05au-cs240c/lab/386htm09.tar.gz

• See also:
– Volume 2 of AMD64 Documentation:

• http://www.scs.stanford.edu/05au-cs240c/lab/amd64/AMD64-2.pdf
– Volume 3A of Intel Pentium Manual:

• http://www.scs.stanford.edu/05au-cs240c/lab/ia32/IA32-3.pdf
– Volume 3A of Intel (IA-32 and Intel 64) manual

• http://www.intel.com/content/www/us/en/architecture-and-
technology/64-ia-32-architectures-software-developer-vol-3a-part-1-
manual.html
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x86 page directory entry
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x86 page table entry
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Where does the OS kernel live?

• In its own address space? No – Cannot  do this on most 
hardware
– e.g., syscall instruction will not switch address spaces
– Also would make it harder to parse syscall arguments passed as 

pointers
• So in the same address space as process

– Use protection bits to prohibit user code from accessing kernel 
code/data

• Typically all kernel code and most kernel data are 
mapped at same virtual address in every address space
– On x86, must manually set up page tables for this
– Usually, just map kernel in contiguous virtual memory when boot 

loader puts kernel into contiguous memory
– Some hardware/systems put physical memory (kernel-only) 

somewhere in virtual address space 24



Where does the OS kernel live?
Example: Virtual address space layout of a Linux process
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Making paging fast
• Motivating example: x86 (2-level) paging structures require 3 memory 

references per load/store instruction
– (1) Look up page table address in page directory
– (2) Look up PPN in page table
– (3) Actually access physical page corresponding to virtual address

• For speed, the CPU caches the recently used translations
– Special cache called a translation lookaside buffer or TLB
– Typical: 64-2k entries, 4-way to fully associative, 95% hit rate
– Each TLB entry maps a VPN to PPN + protection information

• On each memory reference:
– CPU checks TLB, if entry present get physical address fast
– If not, walk page tables, insert in TLB for next time (must evict some 

entry)
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TLB – Principle

• A TLB is a fast (small) associative memory which can 
perform a parallel search

• It acts as a cache for the page table

• TLB management can either be done at the hardware or 
software level (depending on the design choice for a 
given processor architecture)
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TLB effective access time

• The percentage of successful lookups in the TLB is 
called the TLB hit ratio

• Typical TLB stats:
– Size: from a few to a few hundreds (max. thousands) of entries
– Hit time: 0-1 clock cycle
– Miss penalty: 10-100 clock cycles
– Miss rate: depends on the workload

• Example:
– If a TLB hit takes 1 clock cycle, a miss takes 30 cycles and the 

miss rate is 1%, the effective memory cycle rate is an average of 
1x0.99 + (1+30)x0.01 = 1.3 clock cycles per instruction

– A 10% miss rate would lead to 4 cycles 
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TLB details

• TLB operates at CPU pipeline speed (fast)

• Complication: what to do when switching address 
space?

– Flush TLB on context switch (e.g., on x86 processors until 
recently)

– Another design: Tag each entry with associated process ID: 
ASIDs (address space IDs)

• E.g., MIPS, and recent extensions to the x86 architecture
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TLB details (continued)

• In general, the OS must manually keep the TLB valid

– E.g., x86 invlpg instruction
• Invalidates a page translation in TLB
• Must execute after changing a possibly used page table entry
• Otherwise, hardware will miss page table change

– On a multiprocessor, more complex
• Every core has its own TLB
• Maintaining consistency is non-trivial (TLB shootdown coordination 

software protocol)
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An example of a very different MMU: MIPS

• Hardware has 64-entry TLB
– References to addresses not found in TLB triggers trap to kernel
– In other words: TLB misses are handled by the (OS) software 

rather than by the hardware

• Specific processor instructions for the manipulation of 
the TLB entries
– Because the contents of the TLB must be software managed

• A different trade-of compared to x86
– Pros: Simpler hardware,  flexibility for OS design (the OS is free 

to choose the page table format)
– Cons: More things to be performed in software: performance, 

additional complexity (must avoid infinite chain of TLB misses)
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