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Paging to disk

* Motivation: use secondary storage (disk) to
provide a virtual memory with a larger
capacity than the physical memory

« The RAM acts like a cache for the disk



Paging to disk (continued)
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Paging to disk
Example

« gcc needs a new page of memory
« The kernel reclaims an idle page from emacs

« |f the reclaimed page is clean (

)

— E.g., page of text from emacs binary on disk

— This page can always be re-read from disk
— OK to discard contents and give page (frame) to gcc

 If the reclaimed page is dirty ( )
— The kernel must write the page to disk first before giving it to gcc

« Either way:
— Mark page invalid in emacs’s paging information
— emacs Will trigger fault on next access to this virtual page

— On fault, the kernel reads page data back from disk into a new physical
page, maps new page into emacs, resumes execution of emacs



Working set model
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* The disk is much, much slower than memory
— Goal: run at memory speed, not disk speed

* 90/10 (or 80/20) rule: 10% of memory gets 90% of
memory references
— So, keep that 10% in real memory, the other 90% on disk
— How to pick which 10%7?



Paging challenges

* How to resume a process after a fault?
— Need to save state and resume
— Process might be in the middle of an instruction

 What to fetch?
— Just needed page or more?

« What to evict?

— How to allocate physical pages among processes?

— Which pages of a particular process to keep in
memory?



Re-starting instructions

« Hardware provides kernel with info about page faulit
— Faulting virtual address
— Address of instruction that caused fault
— Was the access a read or write? Was it an instruction fetch?

— Was it caused by user access to kernel-only memory?
(protection fault)

 Hardware must allow resuming after a fault

* |dempotent instructions are easy
— E.g., simple load or store instruction can be restarted
— Just re-execute any instruction that only accesses one address



What to fetch?

« Bring in page that caused page fault

* Pre-fetch surrounding pages?

— In many cases, reading two disk blocks is approximately as fast
as reading one

— If application exhibits spatial locality, then big win to store and
read multiple contiguous pages

* Also, keep a pool of zero-filled pages

— Frequently required for new pages in process stacks, heaps, and
anonymously mmapped memory

— Zeroing them only on-demand is slower
— So many OSes zero the free pages while CPU is idle
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What to evict? Selecting pages
Straw man: FIFO eviction

* Evict oldest page fetched in system

« Example - consider the following reference string:
-1,2,3,4,1,2,5,1,2,3,4,5

« With a capacity of 3 physical pages: 9 page faults

1T11]14 5
2 12|11 3 9page faults

3132 4

14



What to evict? Selecting pages
Straw man: FIFO eviction

 Evict oldest page fetched in system

« Example - consider the following reference string:
-1,2,3,4,1,2,5,1,2,3,4,5

« With a capacity of 3 physical pages: 9 page faults
« With a capacity of 4 physical pages: 10 page faults
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Selecting physical pages
Belady’ s anomaly
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More physical memory does not always mean fewer faults!
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Optimal page replacement

 What is optimal (if you knew the future)?

— Replace page that will not be used for the longest period of
time

« Example — with reference string
-1,2,3,4,1,2,5,1,2,3,4,5

* With 4 physical pages

114
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LRU page replacement

 Approximate optimal with least recently used
— Because past often predicts the future

Example — with reference string 1

-1,2,3,4,1,2,5,1,2,3,4,5

With 4 physical pages: 8 page faults

AT DN

Problem 1: can be pathologic— example?
— Looping over memory (then want MRU eviction)

Problem 2: How to implement?
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Straw man LRU implementations

* |dea 1: Stamp PTEs with timer value
— E.g., using the CPU cycle counter
— Automatically write value to PTE on each page access

— (When page selection is needed) Scan page table to find oldest
counter value = LRU page

— Problem: would dramatically increase the memory traffic

« |dea 2: Keep doubly-linked list of pages
— On access, remove page, place at tail of list
— Problem: again, very expensive

e What to do?
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Clock algorithm

Use “accessed” bit supported by most hardware

— E.g., Intel x86 processors will write 1 to “A” bit in PTE on first
access

— Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages

AT
Keep pages in circular FIFO list /A_ \ A=0

=0
* Scan: A-0 A=1
— If page’s “A” bit == 1, set to 0 and skip A=1 A=1
— Else, if “A” == 0, evict A=0[775 A=1

A.k.a. “second-chance replacement”

20



Clock algorithm (continued)

Large memory may be a problem
— Most pages referenced in long interval
— So we may end up having all pages with A=1

Add a second clock hand

— Two hands move in lockstep
— Leading hand clears “A” bit
— Trailing hand evicts pages with “A”==

Can also take advantage of hardware “dirty bit”

— Each page can be (unaccessed, clean), (unaccessed, dirty), (accesseaq,
clean) or (accessed, dirty)

Or use n-bit variable count instead of just “A” bit
— On sweep: count = (A << (n-1)) | (count >> 1)
— Evict page with lowest count 22



Other replacement algorithms

Random eviction
— Very simple to implement
— Not overly horrible results (avoids Belady and pathological cases)

LFU (least frequently used) eviction

— Instead of just “A” bit, count the number of times each page is
accessed

— Least frequently accessed page must not be very useful (or maybe was
just brought in and is about to be used)

— Decay usage counts over time (for pages that fall out of usage)

MFU (most frequently used) algorithm

— ldea: page with the smallest count was probably just brought in and has
yet to be used (so it should not be evicted)

Neither LFU nor MFU used very commonly
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Nalve paging
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* Naive page replacement: 2 disk I/Os per page fault



Page buffering

 |dea: reduce number of I/Os on the critical path

« Keep pool of free page frames
— On fault, still select victim page to evict
— But read fetched page into already free page
— Can resume execution while writing out victim page
— Then add victim page to free pool

« Can also yank pages back from free pool
— Contains only clean pages, but may still have data
— If page fault on page still in free pool, recycle
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Outline

Principles

Challenge 1: resuming a process
Challenge 2: choosing what to fetch
Challenge 3: choosing what to eject
Further problems and optimizations
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Page allocation

* Allocation can be global or local

« Global allocation does not consider page ownership
— E.g., with LRU, evict least recently used page of any process
— Works well if P1 needs 10% of memory and P2 needs 70%

T -

— Does not protect you from “memory pigs” (imagine P2 keeps
looping through array that is size of mem)
* Local allocation isolates processes (or users)

— Separately determine how much memory each process should
have

— Then use LRU/clock/etc. to determine which pages to evict
within each process
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Thrashing

* Thrashing: processes on system require more memory
than it has

— Each time one page is brought in, another page, whose contents
will be soon referenced, is thrown out

— Processes will spend all of their time blocked, waiting for pages
to be fetched from disk

— /O devices at 100% utilization but system not getting much
useful work done

« What we wanted: virtual memory as large as the disk

with access time as low as the one of the physical
memory

« What we have: memory with access time of the disk ®
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Reasons for thrashing

* Process does not reuse memory, so caching does not
work (past != future)

* Process does reuse memory, but it does not “fit”

P1
mem

 Individually, all processes fit and reuse memory, but too
many for system
— At least, this case is possible to address (see next slides)

e

| mem |
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Multiprogramming and thrashing

>

| thrashing

CPU utilization

degree of multiprogramming

* Need to shed load when thrashing
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Dealing with thrashing

 Approach 1: working set

— Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

— Or: how much memory does process need in order to make
reasonable progress (its working set size)?

— Only run processes whose memory requirements can be
satisfied

Approach 2: page fault frequency (PFF)
— Thrashing viewed as poor ratio of “page fetch” to “useful work”
— PFF = page faults / instructions executed

— If PFF rises above threshold, process needs more memory. If not
enough memory on the system, swap out.

— If PFF sinks below threshold, memory can be taken away
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Working sets
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* Working sets changes across phases
— Baloons during transition
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Calculating the working set

Working set: all the pages that a process will access in
next T time frame
— Cannot calculate without predicting the future

Approximate by assuming past predicts future
— So working set ~ pages accessed in last T interval

Keep idle time for each page

Periodically scan all resident pages in the system

— “A” bit set? Clear it and clear the page’s idle time

— “A” bit clear? Add CPU consumed since last scan to idle time
— Working set is pages with idle time < T
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Two-level scheduler

Divide processes into active and inactive
— Active — means working set resident in memory
— Inactive — working set intentionally not loaded

Balance set: union of all active working sets
— Must keep balance set smaller than physical memory

Use long-term scheduler
— Moves processes from active to inactive state until balance set is small enough
— Periodically allows inactive to become active
— As working set changes, must update balance set

Complications
— How to chose idle time threshold T?
— How to pick processes for active set?
— How to count shared memory (e.g., libc.so0)?
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Recap

« Paging brings nice benefits

— Removes the fragmentation issue (in the context of address space
management)

— Enables to offload the RAM (demand paging) and thus to fit more
processes in RAM

— Enables to run processes requiring more memory than the available
RAM

 Page replacement issues

— When the RAM is full, a page must be evicted, stored back on the disk
and replaced in RAM by the requested one

— This content management has similarities with the ones in caches, TLB,
... but is implemented in software

— Good policies build on locality, regularity of memory accesses

— Workload and speed/size of the different memory/disk components call
for different policies, data structures and tradeoffs
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