Virtual memory
Paging to disk

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were
inspired by or even borrowed from the work of
others:
— Arnaud Legrand, Noel De Palma, Sacha Krakowiak

— David Maziéres (Stanford)

« (most slides/figures directly adapted from those of the CS140
class)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
— Textbooks (Silberschatz et al., Tanenbaum)

Outline

 Cha
 Cha
 Cha
* Furt

Principles

enge 1: resuming a process
enge 2: choosing what to fetch
enge 3: choosing what to eject

ner problems and optimizations

Paging to disk

* Motivation: use secondary storage (disk) to
provide a virtual memory with a larger
capacity than the physical memory

« The RAM acts like a cache for the disk

Paging to disk (continued)

load M

page is on

backing store

et

\v

operating
system
reference
trap
i

restart page table

instruction
free frame |« e
reset page bring in
table missing page
physical

memory

Paging to disk
Example

« gcc needs a new page of memory
« The kernel reclaims an idle page from emacs

« |f the reclaimed page is clean (

)

— E.g., page of text from emacs binary on disk

— This page can always be re-read from disk
— OK to discard contents and give page (frame) to gcc

 If the reclaimed page is dirty ()
— The kernel must write the page to disk first before giving it to gcc

« Either way:
— Mark page invalid in emacs’s paging information
— emacs Will trigger fault on next access to this virtual page

— On fault, the kernel reads page data back from disk into a new physical
page, maps new page into emacs, resumes execution of emacs

Working set model

SaJuUaJ2jad JO #

* The disk is much, much slower than memory
— Goal: run at memory speed, not disk speed

* 90/10 (or 80/20) rule: 10% of memory gets 90% of
memory references
— So, keep that 10% in real memory, the other 90% on disk
— How to pick which 10%7?

Paging challenges

* How to resume a process after a fault?
— Need to save state and resume
— Process might be in the middle of an instruction

 What to fetch?
— Just needed page or more?

« What to evict?

— How to allocate physical pages among processes?

— Which pages of a particular process to keep in
memory?

Re-starting instructions

« Hardware provides kernel with info about page faulit
— Faulting virtual address
— Address of instruction that caused fault
— Was the access a read or write? Was it an instruction fetch?

— Was it caused by user access to kernel-only memory?
(protection fault)

 Hardware must allow resuming after a fault

* |dempotent instructions are easy
— E.g., simple load or store instruction can be restarted
— Just re-execute any instruction that only accesses one address

What to fetch?

« Bring in page that caused page fault

* Pre-fetch surrounding pages?

— In many cases, reading two disk blocks is approximately as fast
as reading one

— If application exhibits spatial locality, then big win to store and
read multiple contiguous pages

* Also, keep a pool of zero-filled pages

— Frequently required for new pages in process stacks, heaps, and
anonymously mmapped memory

— Zeroing them only on-demand is slower
— So many OSes zero the free pages while CPU is idle

12

What to evict? Selecting pages
Straw man: FIFO eviction

* Evict oldest page fetched in system

« Example - consider the following reference string:
-1,2,3,4,1,2,5,1,2,3,4,5

« With a capacity of 3 physical pages: 9 page faults

1T11]14 5
2 12|11 3 9page faults

3132 4

14

What to evict? Selecting pages
Straw man: FIFO eviction

 Evict oldest page fetched in system

« Example - consider the following reference string:
-1,2,3,4,1,2,5,1,2,3,4,5

« With a capacity of 3 physical pages: 9 page faults
« With a capacity of 4 physical pages: 10 page faults

A WO N

A WO N

5 4
1 5 10 page faults

2
3

15

Selecting physical pages
Belady’ s anomaly

16

=k
o

—_
o N
. 2

number of page faults

N A~ OO @

1 2 3 4 5 6
number of frames

~I

More physical memory does not always mean fewer faults!

16

Optimal page replacement

 What is optimal (if you knew the future)?

— Replace page that will not be used for the longest period of
time

« Example — with reference string
-1,2,3,4,1,2,5,1,2,3,4,5

* With 4 physical pages

114

6 page faults

A~ W DN

LRU page replacement

 Approximate optimal with least recently used
— Because past often predicts the future

Example — with reference string 1

-1,2,3,4,1,2,5,1,2,3,4,5

With 4 physical pages: 8 page faults

AT DN

Problem 1: can be pathologic— example?
— Looping over memory (then want MRU eviction)

Problem 2: How to implement?

18

Straw man LRU implementations

* |dea 1: Stamp PTEs with timer value
— E.g., using the CPU cycle counter
— Automatically write value to PTE on each page access

— (When page selection is needed) Scan page table to find oldest
counter value = LRU page

— Problem: would dramatically increase the memory traffic

« |dea 2: Keep doubly-linked list of pages
— On access, remove page, place at tail of list
— Problem: again, very expensive

e What to do?

19

Clock algorithm

Use “accessed” bit supported by most hardware

— E.g., Intel x86 processors will write 1 to “A” bit in PTE on first
access

— Software managed TLBs like MIPS can do the same

Do FIFO but skip accessed pages

AT
Keep pages in circular FIFO list /A_ \ A=0

=0
* Scan: A-0 A=1
— If page’s “A” bit == 1, set to 0 and skip A=1 A=1
— Else, if “A” == 0, evict A=0[775 A=1

A.k.a. “second-chance replacement”

20

Clock algorithm (continued)

Large memory may be a problem
— Most pages referenced in long interval
— So we may end up having all pages with A=1

Add a second clock hand

— Two hands move in lockstep
— Leading hand clears “A” bit
— Trailing hand evicts pages with “A”==

Can also take advantage of hardware “dirty bit”

— Each page can be (unaccessed, clean), (unaccessed, dirty), (accesseaq,
clean) or (accessed, dirty)

Or use n-bit variable count instead of just “A” bit
— On sweep: count = (A << (n-1)) | (count >> 1)
— Evict page with lowest count 22

Other replacement algorithms

Random eviction
— Very simple to implement
— Not overly horrible results (avoids Belady and pathological cases)

LFU (least frequently used) eviction

— Instead of just “A” bit, count the number of times each page is
accessed

— Least frequently accessed page must not be very useful (or maybe was
just brought in and is about to be used)

— Decay usage counts over time (for pages that fall out of usage)

MFU (most frequently used) algorithm

— ldea: page with the smallest count was probably just brought in and has
yet to be used (so it should not be evicted)

Neither LFU nor MFU used very commonly

23

Nalve paging

frame valid—invalid bit

S g—
swap out
change victim
0 |i to invalid @ page
f v /
@ f| victim
reset page \
table for
page table
new page @ swap \
desired
page in
physical
memory

* Naive page replacement: 2 disk I/Os per page fault

Page buffering

 |dea: reduce number of I/Os on the critical path

« Keep pool of free page frames
— On fault, still select victim page to evict
— But read fetched page into already free page
— Can resume execution while writing out victim page
— Then add victim page to free pool

« Can also yank pages back from free pool
— Contains only clean pages, but may still have data
— If page fault on page still in free pool, recycle

25

Outline

Principles

Challenge 1: resuming a process
Challenge 2: choosing what to fetch
Challenge 3: choosing what to eject
Further problems and optimizations

26

Page allocation

* Allocation can be global or local

« Global allocation does not consider page ownership
— E.g., with LRU, evict least recently used page of any process
— Works well if P1 needs 10% of memory and P2 needs 70%

T -

— Does not protect you from “memory pigs” (imagine P2 keeps
looping through array that is size of mem)
* Local allocation isolates processes (or users)

— Separately determine how much memory each process should
have

— Then use LRU/clock/etc. to determine which pages to evict
within each process

27

Thrashing

* Thrashing: processes on system require more memory
than it has

— Each time one page is brought in, another page, whose contents
will be soon referenced, is thrown out

— Processes will spend all of their time blocked, waiting for pages
to be fetched from disk

— /O devices at 100% utilization but system not getting much
useful work done

« What we wanted: virtual memory as large as the disk

with access time as low as the one of the physical
memory

« What we have: memory with access time of the disk ®

28

Reasons for thrashing

* Process does not reuse memory, so caching does not
work (past != future)

* Process does reuse memory, but it does not “fit”

P1
mem

 Individually, all processes fit and reuse memory, but too
many for system
— At least, this case is possible to address (see next slides)

e

| mem |

29

Multiprogramming and thrashing

>

| thrashing

CPU utilization

degree of multiprogramming

* Need to shed load when thrashing

30

Dealing with thrashing

 Approach 1: working set

— Thrashing viewed from a caching perspective: given locality of
reference, how big a cache does the process need?

— Or: how much memory does process need in order to make
reasonable progress (its working set size)?

— Only run processes whose memory requirements can be
satisfied

Approach 2: page fault frequency (PFF)
— Thrashing viewed as poor ratio of “page fetch” to “useful work”
— PFF = page faults / instructions executed

— If PFF rises above threshold, process needs more memory. If not
enough memory on the system, swap out.

— If PFF sinks below threshold, memory can be taken away

31

Working sets

.

2Z1S }2s buiyuom

\M>
ransition, stable

* Working sets changes across phases
— Baloons during transition

32

Calculating the working set

Working set: all the pages that a process will access in
next T time frame
— Cannot calculate without predicting the future

Approximate by assuming past predicts future
— So working set ~ pages accessed in last T interval

Keep idle time for each page

Periodically scan all resident pages in the system

— “A” bit set? Clear it and clear the page’s idle time

— “A” bit clear? Add CPU consumed since last scan to idle time
— Working set is pages with idle time < T

33

Two-level scheduler

Divide processes into active and inactive
— Active — means working set resident in memory
— Inactive — working set intentionally not loaded

Balance set: union of all active working sets
— Must keep balance set smaller than physical memory

Use long-term scheduler
— Moves processes from active to inactive state until balance set is small enough
— Periodically allows inactive to become active
— As working set changes, must update balance set

Complications
— How to chose idle time threshold T?
— How to pick processes for active set?
— How to count shared memory (e.g., libc.so0)?

34

Recap

« Paging brings nice benefits

— Removes the fragmentation issue (in the context of address space
management)

— Enables to offload the RAM (demand paging) and thus to fit more
processes in RAM

— Enables to run processes requiring more memory than the available
RAM

 Page replacement issues

— When the RAM is full, a page must be evicted, stored back on the disk
and replaced in RAM by the requested one

— This content management has similarities with the ones in caches, TLB,
... but is implemented in software

— Good policies build on locality, regularity of memory accesses

— Workload and speed/size of the different memory/disk components call
for different policies, data structures and tradeoffs

36

References

* Bruce Jacob and Trevor Mudge. Virtual memory: issues
of implementation. IEEE Computer, June 1998.

 AMD and Intel documentations (see previously
mentioned links)

* Replacement policies and working sets: see textbooks

37

