
Virtual memory
Paging to disk

M1 MOSIG – Operating System Design

Renaud Lachaize



Acknowledgments

• Many ideas and slides in these lectures were 
inspired by or even borrowed from the work of 
others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (most slides/figures directly adapted from those of the CS140 
class) 

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Textbooks (Silberschatz et al., Tanenbaum)

2



Outline

• Principles
• Challenge 1: resuming a process
• Challenge 2: choosing what to fetch
• Challenge 3: choosing what to eject
• Further problems and optimizations

3



Paging to disk

• Motivation: use secondary storage (disk) to 
provide a virtual memory with a larger 
capacity than the physical memory

• The RAM acts like a cache for the disk

4



Paging to disk (continued)

5



Paging to disk
Example
• gcc needs a new page of memory
• The kernel reclaims an idle page from emacs

• If the reclaimed page is clean (i.e., also stored on disk, with the 
same contents)
– E.g., page of text from emacs binary on disk
– This page can always be re-read from disk
– OK to discard contents and give page (frame) to gcc

• If the reclaimed page is dirty (i.e., is the only valid copy)
– The kernel must write the page to disk first before giving it to gcc

• Either way:
– Mark page invalid in emacs’s paging information
– emacs will trigger fault on next access to this virtual page
– On fault, the kernel reads page data back from disk into a new physical 

page, maps new page into emacs, resumes execution of emacs 6



Working set model

• The disk is much, much slower than memory
– Goal: run at memory speed, not disk speed

• 90/10 (or 80/20) rule: 10% of memory gets 90% of 
memory references
– So, keep that 10% in real memory, the other 90% on disk
– How to pick which 10%?

7



Paging challenges

• How to resume a process after a fault?
– Need to save state and resume
– Process might be in the middle of an instruction

• What to fetch?
– Just needed page or more?

• What to evict?
– How to allocate physical pages among processes?
– Which pages of a particular process to keep in 

memory?
8



Re-starting instructions

• Hardware provides kernel with info about page fault
– Faulting virtual address
– Address of instruction that caused fault
– Was the access a read or write? Was it an instruction fetch?
– Was it caused by user access to kernel-only memory? 

(protection fault)

• Hardware must allow resuming after a fault

• Idempotent instructions are easy
– E.g., simple load or store instruction can be restarted
– Just re-execute any instruction that only accesses one address

9



What to fetch?

• Bring in page that caused page fault

• Pre-fetch surrounding pages?
– In many cases, reading two disk blocks is approximately as fast 

as reading one
– If application exhibits spatial locality, then big win to store and 

read multiple contiguous pages

• Also, keep a pool of zero-filled pages
– Frequently required for new pages in process stacks, heaps, and 

anonymously mmapped memory
– Zeroing them only on-demand is slower
– So many OSes zero the free pages while CPU is idle 

12



What to evict? Selecting pages
Straw man: FIFO eviction
• Evict oldest page fetched in system

• Example - consider the following reference string:
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With a capacity of 3 physical pages: 9 page faults

14



What to evict? Selecting pages
Straw man: FIFO eviction
• Evict oldest page fetched in system
• Example - consider the following reference string:

– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With a capacity of 3 physical pages: 9 page faults
• With a capacity of 4 physical pages: 10 page faults

15



Selecting physical pages
Belady’s anomaly

More physical memory does not always mean fewer faults!

16



Optimal page replacement

• What is optimal (if you knew the future)?
– Replace page that will not be used for the longest period of 

time

• Example – with reference string
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages

17



LRU page replacement

• Approximate optimal with least recently used
– Because past often predicts the future

• Example – with reference string
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages: 8 page faults

• Problem 1: can be pathologic– example?
– Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
18



Straw man LRU implementations

• Idea 1: Stamp PTEs with timer value
– E.g., using the CPU cycle counter
– Automatically write value to PTE on each page access
– (When page selection is needed) Scan page table to find oldest 

counter value = LRU page
– Problem: would dramatically increase the memory traffic

• Idea 2: Keep doubly-linked list of pages
– On access, remove page, place at tail of list
– Problem: again, very expensive

• What to do?
– Just approximate LRU, don’t try to do it exactly

19



Clock algorithm

• Use “accessed” bit supported by most hardware
– E.g., Intel x86 processors will write 1 to “A” bit in PTE on first 

access
– Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages

• Keep pages in circular FIFO list
• Scan:

– If page’s “A” bit == 1, set to 0 and skip
– Else, if “A” == 0, evict

• A.k.a. “second-chance replacement”

20



Clock algorithm (continued)
• Large memory may be a problem

– Most pages referenced in long interval
– So we may end up having all pages with A=1

• Add a second clock hand
– Two hands move in lockstep
– Leading hand clears “A” bit
– Trailing hand evicts pages with “A”==0

• Can also take advantage of hardware “dirty bit”
– Each page can be (unaccessed, clean), (unaccessed, dirty), (accessed, 

clean) or (accessed, dirty)
– Consider clean pages for eviction before dirty ones

• Or use n-bit variable count instead of just “A” bit
– On sweep: count = (A << (n-1)) | (count >> 1)
– Evict page with lowest count 22



Other replacement algorithms

• Random eviction
– Very simple to implement
– Not overly horrible results (avoids Belady and pathological cases)

• LFU (least frequently used) eviction
– Instead of just “A” bit, count the number of times each page is 

accessed
– Least frequently accessed page must not be very useful (or maybe was 

just brought in and is about to be used)
– Decay usage counts over time (for pages that fall out of usage)

• MFU (most frequently used) algorithm
– Idea: page with the smallest count was probably just brought in and has 

yet to be used (so it should not be evicted)

• Neither LFU nor MFU used very commonly
23



Naïve paging

• Naïve page replacement: 2 disk I/Os per page fault

24



Page buffering

• Idea: reduce number of I/Os on the critical path

• Keep pool of free page frames
– On fault, still select victim page to evict
– But read fetched page into already free page
– Can resume execution while writing out victim page
– Then add victim page to free pool

• Can also yank pages back from free pool
– Contains only clean pages, but may still have data
– If page fault on page still in free pool, recycle

25



Outline

• Principles
• Challenge 1: resuming a process
• Challenge 2: choosing what to fetch
• Challenge 3: choosing what to eject
• Further problems and optimizations

26



Page allocation

• Allocation can be global or local
• Global allocation does not consider page ownership

– E.g., with LRU, evict least recently used page of any process
– Works well if P1 needs 10% of memory and P2 needs 70%

– Does not protect you from “memory pigs” (imagine P2 keeps 
looping through array that is size of mem)

• Local allocation isolates processes (or users)
– Separately determine how much memory each process should 

have
– Then use LRU/clock/etc. to determine which pages to evict 

within each process
27



Thrashing

• Thrashing: processes on system require more memory 
than it has
– Each time one page is brought in, another page, whose contents 

will be soon referenced, is thrown out
– Processes will spend all of their time blocked, waiting for pages 

to be fetched from disk
– I/O devices at 100% utilization but system not getting much 

useful work done

• What we wanted: virtual memory as large as the disk 
with access time as low as the one of the physical 
memory

• What we have: memory with access time of the disk L

28



Reasons for thrashing

• Process does not reuse memory, so caching does not 
work (past != future)

• Process does reuse memory, but it does not “fit”

• Individually, all processes fit and reuse memory, but too 
many for system
– At least, this case is possible to address (see next slides)

29



Multiprogramming and thrashing

• Need to shed load when thrashing
30



Dealing with thrashing

• Approach 1: working set
– Thrashing viewed from a caching perspective: given locality of 

reference, how big a cache does the process need?
– Or: how much memory does process need in order to make 

reasonable progress (its working set size)?
– Only run processes whose memory requirements can be 

satisfied

• Approach 2: page fault frequency (PFF)
– Thrashing viewed as poor ratio of “page fetch” to “useful work”
– PFF = page faults / instructions executed
– If PFF rises above threshold, process needs more memory. If not 

enough memory on the system, swap out.
– If PFF sinks below threshold, memory can be taken away

31



Working sets

• Working sets changes across phases
– Baloons during transition

32



Calculating the working set

• Working set: all the pages that a process will access in 
next T time frame
– Cannot calculate without predicting the future

• Approximate by assuming past predicts future
– So working set ~ pages accessed in last T interval

• Keep idle time for each page

• Periodically scan all resident pages in the system
– “A” bit set? Clear it and clear the page’s idle time
– “A” bit clear? Add CPU consumed since last scan to idle time
– Working set is pages with idle time < T

33



Two-level scheduler
• Divide processes into active and inactive

– Active – means working set resident in memory
– Inactive – working set intentionally not loaded

• Balance set: union of all active working sets
– Must keep balance set smaller than physical memory

• Use long-term scheduler
– Moves processes from active to inactive state until balance set is small enough
– Periodically allows inactive to become active
– As working set changes, must update balance set

• Complications
– How to chose idle time threshold T?
– How to pick processes for active set?
– How to count shared memory (e.g., libc.so)?

34



Recap

• Paging brings nice benefits
– Removes the fragmentation issue (in the context of address space 

management)
– Enables to offload the RAM (demand paging) and thus to fit more 

processes in RAM
– Enables to run processes requiring more memory than the available 

RAM

• Page replacement issues
– When the RAM is full, a page must be evicted, stored back on the disk 

and replaced in RAM by the requested one
– This content management has similarities with the ones in caches, TLB, 

... but is implemented in software
– Good policies build on locality, regularity of memory accesses
– Workload and speed/size of the different memory/disk components call 

for different policies, data structures and tradeoffs

36



References

• Bruce Jacob and Trevor Mudge. Virtual memory: issues 
of implementation. IEEE Computer, June 1998.

• AMD and Intel documentations (see previously 
mentioned links)

• Replacement policies and working sets: see textbooks

37


