
Principles of Operating Systems
Virtual Memory – Paging to Disk (+ Additional details)

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2024

1

mailto:thomas.ropars@univ-grenoble-alpes.fr


References

• These slides are adapted from the slides of Renaud Lachaize

• Chapters of Operating Systems: Three Easy Pieces
▶ Chapter 21: Swapping: Mechanisms
▶ Chapter 22: Swapping: Policies

2



Agenda

• Paging to disk principles

• Choosing what to fetch

• Choosing what to eject

• Further problems

• Memory-mapped files

3



Paging to disk

• Motivation: use secondary storage (disk) to 
provide a virtual memory with a larger 
capacity than the physical memory

• The RAM acts like a cache for the disk

4



Paging to disk (continued)

5



About the eviction of a page
• If the physical memory is full, bringing a new a page to
memory requires removing another page

• Two cases to consider:

▶ The page is clean (most recent modifications are already
stored on disk)

• Replace the content with the new page

▶ The page is dirty (the only valid copy is in memory)
• The content needs to be written to disk before replacement

(takes more time)
• It is faster to evict a clean page

• About the evicted page:
▶ Mark page as not present
▶ Store enough information in the PTE to find the page on Disk
▶ Will need to be loaded again next time it is accessed (Page

fault)

4



About the eviction of a page
• If the physical memory is full, bringing a new a page to
memory requires removing another page

• Two cases to consider:
▶ The page is clean (most recent modifications are already

stored on disk)
• Replace the content with the new page

▶ The page is dirty (the only valid copy is in memory)
• The content needs to be written to disk before replacement

(takes more time)
• It is faster to evict a clean page

• About the evicted page:
▶ Mark page as not present
▶ Store enough information in the PTE to find the page on Disk
▶ Will need to be loaded again next time it is accessed (Page

fault)

4



Working set model

• The disk is much, much slower than memory
– Goal: run at memory speed, not disk speed

• 90/10 (or 80/20) rule: 10% of memory gets 90% of 
memory references
– So, keep that 10% in real memory, the other 90% on disk
– How to pick which 10%?

7



Some challenges

What to fetch?
• Just needed page or more?

What to evict?

5



What to fetch?

• Bring in page that caused page fault

• Pre-fetch surrounding pages?
– In many cases, reading two disk blocks is approximately as fast 

as reading one
– If application exhibits spatial locality, then big win to store and 

read multiple contiguous pages

• Also, keep a pool of zero-filled pages
– Frequently required for new pages in process stacks, heaps, and 

anonymously mmapped memory
– Zeroing them only on-demand is slower
– So many OSes zero the free pages while CPU is idle 

12



What to evict? Selecting pages
Straw man: FIFO eviction
• Evict oldest page fetched in system

• Example - consider the following reference string:
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With a capacity of 3 physical pages: 9 page faults

14



What to evict? Selecting pages
Straw man: FIFO eviction
• Evict oldest page fetched in system
• Example - consider the following reference string:

– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
• With a capacity of 3 physical pages: 9 page faults
• With a capacity of 4 physical pages: 10 page faults

15



Selecting physical pages
Belady’s anomaly

More physical memory does not always mean fewer faults!

16



Optimal page replacement

• What is optimal (if you knew the future)?
– Replace page that will not be used for the longest period of 

time

• Example – with reference string
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages

17



LRU page replacement

• Approximate optimal with least recently used
– Because past often predicts the future

• Example – with reference string
– 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• With 4 physical pages: 8 page faults

• Problem 1: can be pathologic– example?
– Looping over memory (then want MRU eviction)

• Problem 2: How to implement?
18



Straw man LRU implementations

• Idea 1: Stamp PTEs with timer value
– E.g., using the CPU cycle counter
– Automatically write value to PTE on each page access
– (When page selection is needed) Scan page table to find oldest 

counter value = LRU page
– Problem: would dramatically increase the memory traffic

• Idea 2: Keep doubly-linked list of pages
– On access, remove page, place at tail of list
– Problem: again, very expensive

• What to do?
– Just approximate LRU, don’t try to do it exactly

19



Clock algorithm

• Use “accessed” bit supported by most hardware
– E.g., Intel x86 processors will write 1 to “A” bit in PTE on first 

access
– Software managed TLBs like MIPS can do the same

• Do FIFO but skip accessed pages

• Keep pages in circular FIFO list
• Scan:

– If page’s “A” bit == 1, set to 0 and skip
– Else, if “A” == 0, evict

• A.k.a. “second-chance replacement”

20



Other replacement algorithms

• Random eviction
– Very simple to implement
– Not overly horrible results (avoids Belady and pathological cases)

• LFU (least frequently used) eviction
– Instead of just “A” bit, count the number of times each page is 

accessed
– Least frequently accessed page must not be very useful (or maybe was 

just brought in and is about to be used)
– Decay usage counts over time (for pages that fall out of usage)

• MFU (most frequently used) algorithm
– Idea: page with the smallest count was probably just brought in and has 

yet to be used (so it should not be evicted)

• Neither LFU nor MFU used very commonly
23



Naïve paging

• Naïve page replacement: 2 disk I/Os per page fault

24



Page buffering

• Idea: reduce number of I/Os on the critical path

• Keep pool of free page frames
– On fault, still select victim page to evict
– But read fetched page into already free page
– Can resume execution while writing out victim page
– Then add victim page to free pool

• Can also yank pages back from free pool
– Contains only clean pages, but may still have data
– If page fault on page still in free pool, recycle

25



Thrashing

• Thrashing: processes on system require more memory 
than it has
– Each time one page is brought in, another page, whose contents 

will be soon referenced, is thrown out
– Processes will spend all of their time blocked, waiting for pages 

to be fetched from disk
– I/O devices at 100% utilization but system not getting much 

useful work done

• What we wanted: virtual memory as large as the disk 
with access time as low as the one of the physical 
memory

• What we have: memory with access time of the disk L

28



Reasons for thrashing

• Process does not reuse memory, so caching does not 
work (past != future)

• Process does reuse memory, but it does not “fit”

• Individually, all processes fit and reuse memory, but too 
many for system
– At least, this case is possible to address (see next slides)

29



Multiprogramming and thrashing

• Need to shed load when thrashing
30



Dealing with thrashing

• Approach 1: working set
– Thrashing viewed from a caching perspective: given locality of 

reference, how big a cache does the process need?
– Or: how much memory does process need in order to make 

reasonable progress (its working set size)?
– Only run processes whose memory requirements can be 

satisfied

• Approach 2: page fault frequency (PFF)
– Thrashing viewed as poor ratio of “page fetch” to “useful work”
– PFF = page faults / instructions executed
– If PFF rises above threshold, process needs more memory. If not 

enough memory on the system, swap out.
– If PFF sinks below threshold, memory can be taken away

31



Memory-mapped files

• Key idea: associate an address range within an address space 
(a.k.a. “memory area”/”region”/”zone”, and sometimes “segment”) 
with the contents of a “backing” file (or a portion of a backing file)

• Useful
– For the OS, when building the contents of an address space
– For the application programmers (makes code simpler and/or more 

efficient)
– See details in the next slides

• Two different kinds of backing files
– Regular (persistent) files:

• Initial page bytes come from this file
• Updated bytes may (or may not, depending on settings) be propagated to 

the backing file (and become persistent)
– Fake file full of zeros, called “demand-zero” or “anonymous”

• Does not need to be read from disk
• Once the page is modified (dirtied), treated like any other page
• Updates are not persistent

8



Memory-mapped files (continued)

• Different levels of sharing/visibility
– Shared mapping

• Single copy in physical memory
• Several processes can share it
• Updates from a given process are visible by the other processes 

with the shared mapping
• Updates are propagated to the backing regular file

– Private mapping
• Initially, only a single copy in memory
• When a page is modified, a new page is allocated to store the new 

version
• Updates from a given process are not visible by the other processes 

(with a shared or a private mapping)
• Updates are not propagated to the backing regular file

9



Memory-mapped file
Shared mapping

• Notice that different processes can map the file at different addresses
10

process 1
virtual 

memory

physical memory

process 2 
virtual 

memory

Regular file on disk



Memory-mapped file
Private mapping

11

physical memory

process 1
virtual 

memory

process 2 
virtual 

memory

modified page

unmodified 
version

Regular file on disk

(part of)
swap file on disk



The mmap system call

12

void *mmap(void *start, int len,
           int prot, int flags, int fd, int offset)

len bytes

start
(or address 

chosen by kernel)

Process virtual memoryDisk file specified by 
file descriptor fd

len bytes

offset
(bytes)



The mmap system call (continued)

void *mmap(void *start, int len, int prot, int flags,
int fd, int offset)

• return value: starting address of mapping
– or MAP_FAILED if error

• fd: open file descriptor corresponding to the file to be mapped
• start: hint for the starting address of the mapping

– The kernel may choose a different address
– Typically set to NULL, to let kernel choose address

• len: size of the mapping (in bytes)
• offset: offset relative to the start of the file (in bytes)
• prot: protection rights (for whole mapped region):

– PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE
– Can combine several rights using bitwise OR (e.g., PROT_READ | PROT_WRITE)

• flags:
– MAP_PRIVATE: private mapping
– MAP_SHARED: shared mapping
– MAP_ANONYMOUS: anonymous memory (fd should be -1), i.e. “demand-zero” mapping

• Option that can be combined (bitwise OR) with either MAP_PRIVATE or MAP_SHARED
13



The mmap system call
Purposes of the various types of memory mappings

14

Visibility of 
modifications

Mapping type

File Anonymous

Private Initializing memory 
from contents of file Memory allocation

Shared

Sharing data 
between processes

or

Memory-mapped file
I/O (accessing a file 
without explicit 
read/write calls)

Sharing memory 
between processes 
(of the same family)



The mmap system call
Purposes of the various types of memory mappings (cont.)

• Private-file: initializing memory from contents of file
– Example: program/library data (global static variables)

• Modifications must not be visible from other processes (each process has its 
own copy)

• Private-anonymous
– Used to allocate new, zero-filled memory region, with private 

modifications (e.g., memory heap)
• Shared-file

– Memory mapped I/O: e.g., reading and (persistently) modifying a file 
without having to explicitly use read/write/fread/fwrite ...

– (Persistent) shared buffer for data exchange between (arbitrary) 
processes

• Shared-anonymous
– (Non persistent) shared buffer for data exchange between related 

processes (e.g., parent-child) – such a mapping can only be transmitted 
via “family inheritance” (through fork)

15



The mmap system call
Details on swapping
• What happens when a dirty page within a memory mapped 

region must be swapped out (to disk)?

• The location on disk depends on the type of mapping
– File-shared: update the corresponding (regular) file
– File-private: store the modified page in the swap file
– Anonymous-shared: store the modified page in the swap file
– Anonymous-private: store the modified page in the swap file

• Note:
– The size of the swap file (on disk) + the total size of the physical 

memory provide an upper bound on the maximum (global) amount of 
virtual memory that can be allocated by the OS

– The swap file is stored on disk (and is thus persistent) but its contents 
are discarded upon each reboot

16


