Additional detalls about virtual memory

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:

— Arnaud Legrand, Noel De Palma, Sacha Krakowiak

— David Maziéres (Stanford)

* (many slides/figures directly adapted from those of the CS140
class)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus
PUschel (Carnegie Mellon University)
« Textbook: Computer Systems: A Programmer’s Perspective (2"
Edition)
« CS 15-213/18-243 classes
— Textbooks (Silberschatz et al., Tanenbaum)

Outline

« Systems calls related to virtual memory
* Copy-on-Write

* Hardware/OS paging extensions

* EXxposing page faults to applications

Recall typical virtual address space

0x0

Kernel virtual memory

User stack
(created at runtime)

.
t

Memory-mapped region for
shared libraries

T

Run-time heap
(created by malloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, . rodata)

Unused

Dynamically allocated memory goes in heap
Top of heap called “breakpoint” (brk)
— (Do not confuse with debugging breakpoints)

Memory
T invisible to
user code

<«——stack pointer

<«—— brk

Early VM system calls

« OS keeps “breakpoint” — top of data segment (heap)

— Memory addresses between breakpoint and next region trigger fault on
access

e char *brk(const char addr) ;
— Set and return new value of breakpoint

 char *sbrk(int incr);
— Increment value of breakpoint and return old value

« On modern systems, applications should not directly use such calls

— They will be called indirectly through invocations of malloc or the mmap
system call (described next)

Memory-mapped files

 Key idea: associate an address range within an address space
(a.k.a. “‘memory area’/’region’/"zone ”, and sometimes “segment”)
with the contents of a “backing” file (or a portion of a backing file)

« Useful for different needs:
— For the OS itself, when building the contents of an address space
— For the application programmers (makes code simpler and/or more
efficient)
— See details in the next slides

 Two different kinds of backing files

— Regular (persistent) file
* Initial page bytes come from this file

« Updated bytes may (or may not, depending on settings) be propagated to
the backing file (and become persistent)

— “Anonymous” file (a.k.a. “demand-zero”): fake file full of zeros
« Does not need to be read from disk
« Once the page is modified (dirtied), treated like any other page
« Updates are not persistent

Memory-mapped files (continued)

 Different levels of sharing/visibility
— Shared mapping
« Single copy in physical memory
« Several processes can share it
« Updates from a given process are visible by the other processes

with the shared mapping
Updates are propagated to the backing regular file

— Private mapping

Initially, only a single copy in memory

When a page is modified, a new page is allocated to store the new
version

Updates from a given process are not visible by the other processes
(with a shared or a private mapping)

Updates are not propagated to the backing regular file

Memory-mapped file
Shared mapping

physical memory

~

~

~

~
~
~
~
N
~
~
S
~ ~

~ ~

S ~

-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-

process 1 . process 2
virtwal ([>~_ | | T virtual
S T memory

~
~ e
S ~
~ ~
~ ~
S ~
~ ~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
memao)
~

Regular file on disk

* Notice that different processes can map the file at different addresses
10

Memory-mapped file
Private mapping

physical memory

unmodified
version
modified page
process 1 / process 2
virtual virtual
memory memory

(part of)
swap file on disk

11

The mmap system call

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

....................... B
.. , Len bytes
N </ start
................................... (or address
len bytes< | | chosen by kernel)
offset \J |
(bytes)
Disk file specified by Process virtual memory

file descriptor £d

12

The mmap system call (continued)

void *mmap (void *start, int len, int prot, int flags,
int f£fd, int offset)

« return value: starting address of mapping
— Or MAP_FAILED if error

« f£d: open file descriptor corresponding to the file to be mapped
« start: hint for the starting address of the mapping

— The kernel may choose a different address
— Typically set to NULL, to let kernel choose address
« len: size of the mapping (in bytes)
« offset: offset relative to the start of the file (in bytes)

« prot: protection rights (for whole mapped region):

— PROT_READ, PROT WRITE, PROT EXEC, PROT NONE
— Can combine several rights using bitwise OR (e.g., PROT_READ | PROT WRITE)

« flags:
— MAP_PRIVATE: private mapping

— MAP_SHARED: shared mapping

-~ MAP_ANONYMOUS: anonymous memory (£d should be -1), i.e. “demand-zero” mapping
Option that can be combined (bitwise OR) with either MAP_PRIVATE or MAP_SHARED

13

The mmap system call

Purposes of the various types of memory mappings

Visibility of Mapping type
modifications File Anonymous
Private Initializing Memory Memory allocation

from contents of file

Sharing data

between processes

or Sharing memory
Shared between processes

Memory-mapped file | (of the same family)

I/O (accessing a file

without explicit

read/write calls)

14

The mmap system call
Purposes of the various types of memory mappings (cont.)

« Private-file: initializing memory from contents of file

— Example: program/library data (global static variables)

« Modifications must not be visible from other processes (each process has its
own copy)

* Private-anonymous

— Used to allocate new, zero-filled memory region, with private
modifications (e.g., memory heap)

« Shared-file

— Memory mapped I/O: e.g., reading and (persistently) modifying a file
without having to explicitly use read/write/fread/fwrite ...

— (Persistent) shared buffer for data exchange between (arbitrary)
processes

 Shared-anonymous

— (Non persistent) shared buffer for data exchange between related

processes (e.g., parent-child) — Note that such a mapping can only be
transmitted via “family inheritance” (through £fork)

15

The mmap system call
Details on swapping

What happens when a dirty page within a memory mapped
region must be swapped out (to disk)?

The location on disk depends on the type of mapping
— File-shared: update the corresponding (regular) file
— File-private: store the modified page in the swap file
— Anonymous-shared: store the modified page in the swap file
— Anonymous-private: store the modified page in the swap file

Note:

— The size of the swap file (on disk) + the total size of the physical
memory provide an upper bound on the maximum (global) amount of
virtual memory that can be allocated by the OS

— The swap file is stored on disk (and is thus persistent) but its contents
are discarded upon each reboot

16

Picture from: Bryant & O’Hallaron, Computer systems: a programmer’s perspective / CMU lectures

Address space Iinitialization
via memory mappings

process-specific data
structures
(page tables,
task and mm structs)

same for
each ¢

physical memory

process

\

kernel code/data/stack

kernel

VM

stack

<«—private, demand-zero (r/w)

stack pointer —»

I
T

user
VM

Memory mapped region
for shared libraries

<«—private, file (r/w)

<«—private, file (r/x)

brk —»

I

<«—— .data
] text
Example:

runtime heap (via malloc) |

libec.so

«——private, demand-zero (r/w)

uninitialized data (.bss)

<—— private, demand-zero (r/w)

initialized data (.data)

-«

program text (.text)

.data

<«——private, file (r/w)

«—

text

<«—private, file (r/x)

forbidden

17

More VM system calls

* int msync(void *addr, size t len, int flags);
— Flushes changes of mmapped files to backing store

— Ensures that updates are visible by other processes that access the file
via read

* int munmap (void *addr, size t len)
— Destroys a virtual memory mapping

* int mprotect(void *addr, size t len, int prot)
— Changes protection on pages

* int mincore(void *addr, size t len, char *vec)
— Returns in vec which pages are present in RAM

19

Outline

« Systems calls related to virtual memory
« Copy-on-Write

* Hardware/OS paging extensions

* EXxposing page faults to applications

20

Copy-on-write (CoW)

A technique that allows minimizing the (space) cost of

maintaining two (or more) copies of a given data item

Used in many different contexts (memory, storage, ...) with different

low-level mechanisms. Here, we focus on virtual memory.

Example: CoW is used to efficiently manage private memory

mappings. General principle:

Initially, keep a single copy of the pages of the memory-mapped region.
Configure all the pages as read-only.

A write access to such a page will trigger a protection fault.

In the trap handler: notice that the trap was caused by CoW semantics,
allocate a new frame, copy the original page into it and remap the
corresponding page (for the process that issued the write instruction)

Restart the instruction that caused the write access (like in the case of a
“normal” page fault)

21

Outline

« Systems calls related to virtual memory
* Copy-on-Write

 Hardware/OS paging extensions

* EXxposing page faults to applications

24

Xx86 paging extensions

 PSE: Page size extensions
— Setting bit 7 in a PDE makes a 4MB translation (no page table)
— Note that 4kB pages can coexist with 4MB pages
— (more details later — see discussion about “superpages”)

Linear Address
31 22 21 0

Directory Offset

|

10 Page Directory

22 4-MByte Page

Physical Address

»| Directory Entry /1 o>
>

V3w 1024 PDE = 1024 Pages
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

Xx86 paging extensions (continued)

 PAE: Physical address extensions

Newer 64-bit PTE format allows 36 bits of physical address
(But virtual addresses are still 32-bit long)

Page directories and page tables have only 512 entries
« Each entry is stored on 64 bits
« The size of a page directory or page table is still 4 kB

CR3 register now points to “page directory pointer table”, which contains
pointers to 4 page directories
 This allows regaining 2 lost bits

PDE bit 7 allows (optional) 2MB translation: same principle as PSE but
with smaller page size — since there are only 21 remaining bits for the
offset (compared to 22 bits with “basic PSE”)

26

Xx86 paging extensions (continued)

PAE with 4-kB pages

Linear Address

12 4.KByte Page

Physical Address

31 30 29 21 20 12 11 0
Directory Pointer —» Directory Table Offset
Page Table
Page Directory 9

A9

—»| Directory Entry

Page-Directory-
Pointer Table

— | Dir. Pointer Entry

CR3 (PDPTR)

Page-Table Entry

4 PDPTE * 512 PDE * 512 PTE = 220 Pages

*32 bits aligned onto a 32-byte boundary

27

Xx86 paging extensions (continued)

PAE with 2-MB pages

Linear Address
. 31 30 29 21 20 0
D'{,%‘i’:]‘t’g_ > Directory Offset
/21 2-MByte Page
A9

Page Directory —»| Physical Address

Page-Directory-

Pointer Table

A2
—»| Directory Entry /1/ s >
—»| Dir. Pointer Entry Ll

CR3 (PDPTR)

4 PDPTE * 512 PDE = 2048 Pages

*32 bits aligned onto a 32-byte boundary

X36-64

« x86-64: a 64-bit processor architecture (an evolution of the x86
architecture)

— With 64-bit registers and a 64-bit virtual address format

— Here, we focus on the operating mode named “long mode”. (In
contrast, “legacy mode” is for backwards compatibility with x806)

 However, current implementations:
— Do not allow the entire address space of 264 addresses to be used

— Instead, define a mechanism for translating 48-bit virtual addresses
to 48-bit physical addresses FFFFFFFF FFFFFFFF

Canonical "higher half"

« Only the least significant 48 bits of a virtual address are considered - -::00 50000000
» Bits 48 through 63 of any virtual address must be copies of bit 47

Noncanonical
addresses

Note: Recent extensions (not studied in this lecture) support 57-bit —:’::iZZTIFOF;FFFFF
virtual addresses

00000000 00000000

32

Picture from Wikipedia: https://en.wikipedia.org/wiki/X86-64

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64

x86-64 paging

 Long mode is a superset of x86’s PAE mode

— Page sizes can be 4 kB, 2 MB or 1 GB

— 4-level page table (unlike PAE, which has 3 levels)
« Page directory pointer table is extended from 4 entries to 512

* A new level is introduced: Page Map Level 4 (PML4)

— Contains 512 entries in implementations with 48-bit virtual
addresses

33

Xx86-64 paging (continued)

4kB page translation with 4-level paging structure

Linear Address

47 39 38 30 29 2120 12 11 0
PML4 Directory Ptr [Directory I Table | Offset
| ,
. /19 (
/9 19 12_4-KByte Page
\~> Physical Addr
PTE -
Page-Directory- PDE — 40
Pointer Table 40 Page Table
Page-Directory
-» PDPTE 40
‘9

-
fa

—>»| PML4E
>
fe
CR3

(source: Intel documentation)

Large pages

* (Also known as “superpages” or “huge
pages”)

« The MMU of a modern processor typically
supports several page sizes

— For example, x86-64 supports page sizes of 4 kB, 2
MB and 1 GB

* The configuration is flexible:

— The OS kernel can configure the hardware so that
different virtual memory regions/ranges (possibly
within the same process address space) use

different page sizes
38

Large pages (continued)

 Main advantages:
— Memory footprint of paging structures

— Performance of physical memory allocation (sometimes)

— Performance of virtual memory translations

 Increased coverage of the TLB - Increased TLB hit ratio
— The capacity of the TLB (number of entries) is often very limited
— Example on a quite recent Intel processor:
» 1536 TLB entries
» TLB coverage when using 4kB pages: ~6MB
» TLB coverage when using 2MB pages: ~3GB

* Fewer levels in paging structure - Less time "wasted” in case

of TLB miss
40

Large pages (continued)

 Main weaknesses:
— Performance of swapping (larger data transfers)

— Risk of fragmentation (can you explain why?)

41

Large pages (continued)

How to use them?

« Explicitly:
— OS provides explicit interface for application programmers to request large pages
in a given virtual memory region

* Transparently:

— OS automatically infers that a given memory region would benefit from being
“promoted” to a larger page size (no modifications needed for application-level
code)

— OS may also decide to transparently “demote” a region (switching back to
smaller page size).

— For more details, see the following paper: “A Comprehensive Analysis of
Superpage Management Mechanisms and Policies”

« An OS may potentially support the two approaches

42

64-bit address spaces

« x86-64 has currently only 48-bit virtual address space

 What if you want a 64-bit virtual address space?
— Straight hierarchical page tables not efficient (esp. not space
efficient)
— We will study two other approaches: hashed page tables and inverted
page tables

« Hashed page table
— Hash input value: virtual page number

— Each entry in the hash table contains a linked list of elements that hash
to the same location (to handle collisions)

— Each element in a list contains 3 fields: (1) virtual page number, (2)
physical page frame (+ details such as protection information), (3)

pointer to next element in linked list

— Variant: clustered page tables
« Similar to hashed page table except that each element refers to several

consecutive pages (e.g., 16) rather than a single page
44

64-bit address spaces (continued)

Hashed page table:

physical
logical address l address
p d r ©l ——

hysical
, '|q|slll|llp|r|_1--. memory

hash table

Picture from: Silberschatz et al., Operating systems concepts (8th edition) 45

64-bit address spaces (continued)

* Inverted page table
— Examples: 64-bit UltraSPARC and PowerPC architectures

— In the previous designs that we have studied, each process (address
space) has an associated page table

— In contrast, an inverted page table design uses only a single page
table for the whole system

— One entry for each physical frame
— Each entry contains:

« Corresponding virtual page number (+ details such as protection
information)

 Information about the process that owns the page

- Issues with inverted page tables

— Alookup is costly (may require whole table scan) => Use a hash table
(mapping a virtual page number to an index in the inverted page table)

— Longer worst-case access time than hierarchical page tables

— Sharing physical memory between address spaces is more difficult to

implement 46

64-bit address spaces (continued)

Hashed inverted page table

Virtual page number

Hash function Inverted page table indexed by (physical) frame number

Process ID
(addr. space ID)

Page number
+ additional info.

Chain pointer
(for hash collisions)

For more details, see:

Bruce Jacob and Trevor Mudge. Virtual memory: issues of implementation. IEEE Computer, June 1998.

47

64-bit address spaces (continued)

Hashed inverted page table with hash anchor table

Virtual page number

Hash function Inverted page table indexed by (physical) frame number
Process ID Page number Chain pointer
(addr. space ID) | + additional info. (for hash collisions)

For more details, see:

Bruce Jacob and Trevor Mudge. Virtual memory: issues of implementation. IEEE Computer, June 1998. 48

Outline

« Systems calls related to virtual memory
* Copy-on-Write

* Paging in day-to-day use

 Exposing page faults to applications

49

Exposing page faults to applications (1/2)

* Any invalid memory access requested by the
application triggers a hardware trap

— Any access to an invalid page (no mapping defined)
— Write access to a read-only page

— Attempt to execute code stored in a page defined as
“‘non-executable”

52

Exposing page faults to applications (2/2)

« The code of the trap handler for invalid memory
accesses is registered by the OS kernel

* (On a Unix system) the kernel handler sends a SIGSEGV
signal to the process

« By default, the SIGSEGV handler of the application

simply terminates the process (+ generates optional
“core dump” file with debugging information)

— When the invalid memory access is due to a bug in the
application, there is usually no other choice

— But this mechanism can be also used by application

programmers to implement advanced memory management

at the application level (see next slides for details)
53

Virtual-memory tricks at user level (1/3)

* General idea: allow application to detect and trigger
execution of specific procedure when the application
attempts to access some memory addresses

« Useful for many different purposes, such as:

— Application level strategies for paging to disk

« Example: Big object-oriented application (e.g., database)
— Manages main memory as a cache for much larger on-disk state

— Can make more informed page-replacement decisions than general
purpose OS kernel

— Bring in objects on-demand (and must keep track of dirty objects)
— Concurrent services (running concurrently with respect to the
“regular” application code)
« Examples: concurrent garbage collector, concurrent checkpointing

* Need to keep track of the pages that are concurrently modified by
the application 57

Virtual-memory tricks at user level (2/3)

General approach (implementation):

Application registers specific handler for SIGSEGV signal

Application uses specific syscall (mprotect) to restrict the accessibility
of the user-level page(s) that must be monitored

« Most common example: set R/W page to read-only
Next access to the page triggers invocation of the SIGSEGV handler
provided by application
SIGSEGV handler goes through the following steps:

 ldentify faulting address

« Perform some (application-specific and address specific) action
« Remove accessibility restriction on the faulting page (using mprotect)

Completion of SIGSEGV triggers re-execution of instruction that faulted
(successful this time)

(For unwanted faults, SIGSEGV handler still triggers termination of
process)

58

Virtual-memory tricks at user level (3/3)

« Some advanced details and links

— For more details (on motivation, use cases and implementation),
see the paper [Appel and Li]

— GNU libsigsegyv: a library for handling page faults in user mode

— Userfaultfd (Linux only):

* A new facility provided by the Linux kernel allowing a thread to
monitor and handle the page faults triggered by another thread (in
the same process or in another process)

59

References

« Bruce Jacob and Trevor Mudge. Virtual memory: issues of
implementation. IEEE Computer, June 1998.

« AMD and Intel technical documentations (cf. references from
previous lectures)

* Weixi Zhu, Alan L. Cox, and Scott Rixner. A Comprehensive
Analysis of Superpage Management Mechanisms and Policies.
Proceedings of the 2020 USENIX Annual Technical Conference.

— https://www.usenix.org/conference/atc20/presentation/zhu-weixi

* Andrew Appel and Kai Li, Virtual memory primitives for user
programs. Proceedings of the ASPLOS conference, 1991.

61

https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

