
Additional details about virtual memory

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (many slides/figures directly adapted from those of the CS140
class)

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus

Püschel (Carnegie Mellon University)
• Textbook: Computer Systems: A Programmer’s Perspective (2nd

Edition)
• CS 15-213/18-243 classes

– Textbooks (Silberschatz et al., Tanenbaum)

2

Outline

• Systems calls related to virtual memory
• Copy-on-Write
• Hardware/OS paging extensions
• Exposing page faults to applications

4

Recall typical virtual address space

• Dynamically allocated memory goes in heap
• Top of heap called “breakpoint” (brk)

– (Do not confuse with debugging breakpoints)

5

Early VM system calls

• OS keeps “breakpoint” – top of data segment (heap)
– Memory addresses between breakpoint and next region trigger fault on

access

• char *brk(const char addr);
– Set and return new value of breakpoint

• char *sbrk(int incr);
– Increment value of breakpoint and return old value

• On modern systems, applications should not directly use such calls
– They will be called indirectly through invocations of malloc or the mmap

system call (described next)

7

Memory-mapped files

• Key idea: associate an address range within an address space
(a.k.a. “memory area”/”region”/”zone”, and sometimes “segment”)
with the contents of a “backing” file (or a portion of a backing file)

• Useful for different needs:
– For the OS itself, when building the contents of an address space
– For the application programmers (makes code simpler and/or more

efficient)
– See details in the next slides

• Two different kinds of backing files
– Regular (persistent) file

• Initial page bytes come from this file
• Updated bytes may (or may not, depending on settings) be propagated to

the backing file (and become persistent)
– “Anonymous” file (a.k.a. “demand-zero”): fake file full of zeros

• Does not need to be read from disk
• Once the page is modified (dirtied), treated like any other page
• Updates are not persistent

8

Memory-mapped files (continued)

• Different levels of sharing/visibility
– Shared mapping

• Single copy in physical memory
• Several processes can share it
• Updates from a given process are visible by the other processes

with the shared mapping
• Updates are propagated to the backing regular file

– Private mapping
• Initially, only a single copy in memory
• When a page is modified, a new page is allocated to store the new

version
• Updates from a given process are not visible by the other processes

(with a shared or a private mapping)
• Updates are not propagated to the backing regular file

9

Memory-mapped file
Shared mapping

• Notice that different processes can map the file at different addresses
10

process 1
virtual

memory

physical memory

process 2
virtual

memory

Regular file on disk

Memory-mapped file
Private mapping

11

physical memory

process 1
virtual

memory

process 2
virtual

memory

modified page

unmodified
version

Regular file on disk

(part of)
swap file on disk

The mmap system call

12

void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

The mmap system call (continued)
void *mmap(void *start, int len, int prot, int flags,
 int fd, int offset)

• return value: starting address of mapping
– or MAP_FAILED if error

• fd: open file descriptor corresponding to the file to be mapped
• start: hint for the starting address of the mapping

– The kernel may choose a different address
– Typically set to NULL, to let kernel choose address

• len: size of the mapping (in bytes)
• offset: offset relative to the start of the file (in bytes)
• prot: protection rights (for whole mapped region):

– PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE
– Can combine several rights using bitwise OR (e.g., PROT_READ | PROT_WRITE)

• flags:
– MAP_PRIVATE: private mapping
– MAP_SHARED: shared mapping
– MAP_ANONYMOUS: anonymous memory (fd should be -1), i.e. “demand-zero” mapping

• Option that can be combined (bitwise OR) with either MAP_PRIVATE or MAP_SHARED
13

The mmap system call
Purposes of the various types of memory mappings

14

Visibility of
modifications

Mapping type

File Anonymous

Private Initializing memory
from contents of file Memory allocation

Shared

Sharing data
between processes

or

Memory-mapped file
I/O (accessing a file
without explicit
read/write calls)

Sharing memory
between processes
(of the same family)

The mmap system call
Purposes of the various types of memory mappings (cont.)

• Private-file: initializing memory from contents of file
– Example: program/library data (global static variables)

• Modifications must not be visible from other processes (each process has its
own copy)

• Private-anonymous
– Used to allocate new, zero-filled memory region, with private

modifications (e.g., memory heap)
• Shared-file

– Memory mapped I/O: e.g., reading and (persistently) modifying a file
without having to explicitly use read/write/fread/fwrite ...

– (Persistent) shared buffer for data exchange between (arbitrary)
processes

• Shared-anonymous
– (Non persistent) shared buffer for data exchange between related

processes (e.g., parent-child) – Note that such a mapping can only be
transmitted via “family inheritance” (through fork)

15

The mmap system call
Details on swapping
• What happens when a dirty page within a memory mapped

region must be swapped out (to disk)?

• The location on disk depends on the type of mapping
– File-shared: update the corresponding (regular) file
– File-private: store the modified page in the swap file
– Anonymous-shared: store the modified page in the swap file
– Anonymous-private: store the modified page in the swap file

• Note:
– The size of the swap file (on disk) + the total size of the physical

memory provide an upper bound on the maximum (global) amount of
virtual memory that can be allocated by the OS

– The swap file is stored on disk (and is thus persistent) but its contents
are discarded upon each reboot

16

Address space initialization
via memory mappings

17

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

stack pointer
user
 VM

brk

physical memorysame for
each

process

process-specific data
structures

(page tables,
task and mm structs)

kernel
VM

.data
.text

private, demand-zero (r/w)

private, demand-zero (r/w)

Example: libc.so

.data
.text

private, file (r/w)
private, file (r/x)

private, demand-zero (r/w)

private, file (r/w)
private, file (r/x)

Pi
ct

ur
e

fro
m

: B
ry

an
t &

 O
’H

al
la

ro
n,

 C
om

pu
te

r s
ys

te
m

s:
 a

 p
ro

gr
am

m
er

’s
 p

er
sp

ec
tiv

e
/ C

M
U

 le
ct

ur
es

More VM system calls

• int msync(void *addr, size_t len, int flags);
– Flushes changes of mmapped files to backing store
– Ensures that updates are visible by other processes that access the file

via read

• int munmap(void *addr, size_t len)
– Destroys a virtual memory mapping

• int mprotect(void *addr, size_t len, int prot)
– Changes protection on pages

• int mincore(void *addr, size_t len, char *vec)
– Returns in vec which pages are present in RAM

19

Outline

• Systems calls related to virtual memory
• Copy-on-Write
• Hardware/OS paging extensions
• Exposing page faults to applications

20

Copy-on-write (CoW)

• A technique that allows minimizing the (space) cost of
maintaining two (or more) copies of a given data item

• Used in many different contexts (memory, storage, ...) with different
low-level mechanisms. Here, we focus on virtual memory.

• Example: CoW is used to efficiently manage private memory
mappings. General principle:
– Initially, keep a single copy of the pages of the memory-mapped region.

Configure all the pages as read-only.
– A write access to such a page will trigger a protection fault.
– In the trap handler: notice that the trap was caused by CoW semantics,

allocate a new frame, copy the original page into it and remap the
corresponding page (for the process that issued the write instruction)

– Restart the instruction that caused the write access (like in the case of a
“normal” page fault)

21

Outline

• Systems calls related to virtual memory
• Copy-on-Write
• Hardware/OS paging extensions
• Exposing page faults to applications

24

x86 paging extensions

• PSE: Page size extensions
– Setting bit 7 in a PDE makes a 4MB translation (no page table)
– Note that 4kB pages can coexist with 4MB pages
– (more details later – see discussion about “superpages”)

25

x86 paging extensions (continued)

• PAE: Physical address extensions
– Newer 64-bit PTE format allows 36 bits of physical address
– (But virtual addresses are still 32-bit long)

– Page directories and page tables have only 512 entries
• Each entry is stored on 64 bits
• The size of a page directory or page table is still 4 kB

– CR3 register now points to “page directory pointer table”, which contains
pointers to 4 page directories

• This allows regaining 2 lost bits

– PDE bit 7 allows (optional) 2MB translation: same principle as PSE but
with smaller page size – since there are only 21 remaining bits for the
offset (compared to 22 bits with “basic PSE”)

26

x86 paging extensions (continued)

PAE with 4-kB pages

27

x86 paging extensions (continued)

PAE with 2-MB pages

28

x86-64

• x86-64: a 64-bit processor architecture (an evolution of the x86
architecture)
– With 64-bit registers and a 64-bit virtual address format
– Here, we focus on the operating mode named “long mode”. (In

contrast, “legacy mode” is for backwards compatibility with x86)

• However, current implementations:
– Do not allow the entire address space of 264 addresses to be used
– Instead, define a mechanism for translating 48-bit virtual addresses

to 48-bit physical addresses
• Only the least significant 48 bits of a virtual address are considered
• Bits 48 through 63 of any virtual address must be copies of bit 47

32

Pi
ct

ur
e

fro
m

 W
ik

ip
ed

ia
: h

ttp
s:

//e
n.

w
ik

ip
ed

ia
.o

rg
/w

ik
i/X

86
-6

4

Note: Recent extensions (not studied in this lecture) support 57-bit
virtual addresses

https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/X86-64

x86-64 paging

• Long mode is a superset of x86’s PAE mode

– Page sizes can be 4 kB, 2 MB or 1 GB

– 4-level page table (unlike PAE, which has 3 levels)

• Page directory pointer table is extended from 4 entries to 512

• A new level is introduced: Page Map Level 4 (PML4)
– Contains 512 entries in implementations with 48-bit virtual

addresses

33

x86-64 paging (continued)

4kB page translation with 4-level paging structure

35
(source: Intel documentation)

Large pages

• (Also known as “superpages” or “huge
pages”)

• The MMU of a modern processor typically
supports several page sizes
– For example, x86-64 supports page sizes of 4 kB, 2

MB and 1 GB

• The configuration is flexible:
– The OS kernel can configure the hardware so that

different virtual memory regions/ranges (possibly
within the same process address space) use
different page sizes

38

Large pages (continued)

• Main advantages:
– Memory footprint of paging structures

– Performance of physical memory allocation (sometimes)

– Performance of virtual memory translations

• Increased coverage of the TLB à Increased TLB hit ratio
– The capacity of the TLB (number of entries) is often very limited
– Example on a quite recent Intel processor:

» 1536 TLB entries
» TLB coverage when using 4kB pages: ~6MB
» TLB coverage when using 2MB pages: ~3GB

• Fewer levels in paging structure à Less time ”wasted” in case
of TLB miss

40

Large pages (continued)

• Main weaknesses:

– Performance of swapping (larger data transfers)

– Risk of fragmentation (can you explain why?)

41

Large pages (continued)

How to use them?

• Explicitly:
– OS provides explicit interface for application programmers to request large pages

in a given virtual memory region

• Transparently:

– OS automatically infers that a given memory region would benefit from being
“promoted” to a larger page size (no modifications needed for application-level
code)

– OS may also decide to transparently “demote” a region (switching back to
smaller page size).

– For more details, see the following paper: “A Comprehensive Analysis of
Superpage Management Mechanisms and Policies”

• An OS may potentially support the two approaches

42

64-bit address spaces [Advanced]

• x86-64 has currently only 48-bit virtual address space
• What if you want a 64-bit virtual address space?

– Straight hierarchical page tables not efficient (esp. not space
efficient)

– We will study two other approaches: hashed page tables and inverted
page tables

• Hashed page table
– Hash input value: virtual page number
– Each entry in the hash table contains a linked list of elements that hash

to the same location (to handle collisions)
– Each element in a list contains 3 fields: (1) virtual page number, (2)

physical page frame (+ details such as protection information), (3)
pointer to next element in linked list

– Variant: clustered page tables
• Similar to hashed page table except that each element refers to several

consecutive pages (e.g., 16) rather than a single page
44

64-bit address spaces (continued) [Advanced]

Hashed page table:

45Picture from: Silberschatz et al., Operating systems concepts (8th edition)

64-bit address spaces (continued) [Advanced]

• Inverted page table
– Examples: 64-bit UltraSPARC and PowerPC architectures
– In the previous designs that we have studied, each process (address

space) has an associated page table
– In contrast, an inverted page table design uses only a single page

table for the whole system
– One entry for each physical frame
– Each entry contains:

• Corresponding virtual page number (+ details such as protection
information)

• Information about the process that owns the page
• Issues with inverted page tables

– A lookup is costly (may require whole table scan) => Use a hash table
(mapping a virtual page number to an index in the inverted page table)

– Longer worst-case access time than hierarchical page tables
– Sharing physical memory between address spaces is more difficult to

implement
46

64-bit address spaces (continued) [Advanced]

Hashed inverted page table

47

Process ID
(addr. space ID)

Page number
+ additional info.

Chain pointer
(for hash collisions)

…

Virtual page number

Hash function Inverted page table indexed by (physical) frame number

For more details, see:
Bruce Jacob and Trevor Mudge. Virtual memory: issues of implementation. IEEE Computer, June 1998.

64-bit address spaces (continued) [Advanced]

Hashed inverted page table with hash anchor table

48

Process ID
(addr. space ID)

Page number
+ additional info.

Chain pointer
(for hash collisions)

…

Virtual page number

Hash function Inverted page table indexed by (physical) frame number

…

For more details, see:
Bruce Jacob and Trevor Mudge. Virtual memory: issues of implementation. IEEE Computer, June 1998.

Outline

• Systems calls related to virtual memory
• Copy-on-Write
• Paging in day-to-day use
• Exposing page faults to applications

49

Exposing page faults to applications (1/2) [Advanced]

• Any invalid memory access requested by the
application triggers a hardware trap

– Any access to an invalid page (no mapping defined)

– Write access to a read-only page

– Attempt to execute code stored in a page defined as
“non-executable”

52

Exposing page faults to applications (2/2) [Advanced]

• The code of the trap handler for invalid memory
accesses is registered by the OS kernel

• (On a Unix system) the kernel handler sends a SIGSEGV
signal to the process

• By default, the SIGSEGV handler of the application
simply terminates the process (+ generates optional
“core dump” file with debugging information)
– When the invalid memory access is due to a bug in the

application, there is usually no other choice
– But this mechanism can be also used by application

programmers to implement advanced memory management
at the application level (see next slides for details)

53

Virtual-memory tricks at user level (1/3) [Advanced]

• General idea: allow application to detect and trigger
execution of specific procedure when the application
attempts to access some memory addresses

• Useful for many different purposes, such as:
– Application level strategies for paging to disk

• Example: Big object-oriented application (e.g., database)
– Manages main memory as a cache for much larger on-disk state
– Can make more informed page-replacement decisions than general

purpose OS kernel
– Bring in objects on-demand (and must keep track of dirty objects)

– Concurrent services (running concurrently with respect to the
“regular” application code)

• Examples: concurrent garbage collector, concurrent checkpointing
• Need to keep track of the pages that are concurrently modified by

the application 57

Virtual-memory tricks at user level (2/3) [Advanced]

• General approach (implementation):
– Application registers specific handler for SIGSEGV signal
– Application uses specific syscall (mprotect) to restrict the accessibility

of the user-level page(s) that must be monitored
• Most common example: set R/W page to read-only

– Next access to the page triggers invocation of the SIGSEGV handler
provided by application

– SIGSEGV handler goes through the following steps:
• Identify faulting address
• Perform some (application-specific and address specific) action
• Remove accessibility restriction on the faulting page (using mprotect)

– Completion of SIGSEGV triggers re-execution of instruction that faulted
(successful this time)

– (For unwanted faults, SIGSEGV handler still triggers termination of
process)

58

Virtual-memory tricks at user level (3/3) [Advanced]

• Some advanced details and links

– For more details (on motivation, use cases and implementation),
see the paper [Appel and Li]

– GNU libsigsegv: a library for handling page faults in user mode

– Userfaultfd (Linux only):
• A new facility provided by the Linux kernel allowing a thread to

monitor and handle the page faults triggered by another thread (in
the same process or in another process)

59

References

• Bruce Jacob and Trevor Mudge. Virtual memory: issues of
implementation. IEEE Computer, June 1998.

• AMD and Intel technical documentations (cf. references from
previous lectures)

• Weixi Zhu, Alan L. Cox, and Scott Rixner. A Comprehensive
Analysis of Superpage Management Mechanisms and Policies.
Proceedings of the 2020 USENIX Annual Technical Conference.
– https://www.usenix.org/conference/atc20/presentation/zhu-weixi

• Andrew Appel and Kai Li, Virtual memory primitives for user
programs. Proceedings of the ASPLOS conference, 1991.

61

https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi
https://www.usenix.org/conference/atc20/presentation/zhu-weixi

