Processes
(part 1)

M1 MOSIG — Operating System Design

Renaud Lachaize

Acknowledgments

 Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:

— Arnaud Legrand, Noel De Palma, Sacha Krakowiak
— David Maziéres (Stanford)

* (many slides/figures directly adapted from those of the CS140
class)

— Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)

— Randall Bryant, David O’Hallaron, Gregory Kesden, Markus
PUschel (Carnegie Mellon University)

« Textbook: Computer Systems: A Programmer’s Perspective (2"
Edition) a.k.a. “CSAPP”

« CS 15-213/18-243 classes (many slides/figures directly adapted
from these classes)

— Textbooks (Silberschatz et al., Tanenbaum)

Outline

e |ntroduction

* Basic process management interface from the
user-level

» Kernel-level process management

Processes

A process is an instance of a running program
Modern OSes run multiple programs simultaneously

Examples (can all run simultaneously)
- gecec filel.c — compiler running on file 1
- gecec file2.c — compiler running on file 2
— emacs — text editor
- firefox — web browser

Non-examples (implemented as one process):

— Multiple £irefox windows or emacs frames (still one process)
Why processes?

— Simplicity of programming

— Higher CPU throughput, lower latency (details on next slide)

Speed

« Multiple processes can increase CPU utilization
— QOverlap one process with another’s wait

emacs—-| (Wait for input) I—-IWaiT for inputi—»
>

gcc g

« Multiple processes can reduce latency

— Running A then B requires 100 sec for B to complete
80 s 20 s

A—B—

— Running A and B concurrently makes B finish faster

A- > =

A process’s view of the world

Each process has is own view of the machine
— Its own address space
— Its own open files
— Its own virtual CPU (through preemptive multitasking)

« A given (virtual) address has a different “meaning” for two distinct
processes

« This greatly simplifies the application programming model
— gcc does not care that £irefox is running

« Sometimes interaction between processes is necessary
— Simplest is through files: emacs edits file, gecc compiles it

— More complicated: Shell/lcommand, Window manager/application

Outline

e |ntroduction

* Basic process management interface from the
user-level

» Kernel-level process management

Creating a new process

* pid t fork(void)

— Creates a new process (child process) that is identical

to the calling process (parent process)
— Returns 0O to the child process
— Returns the child’s pid to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

- fork is interesting (and often confusing) because it is

called once but returns twice

10

3

Understanding fork

Process n

pid t pid = fork();
if (pid 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

pid t pid = fork();
if (pid 0) {
printf ("hello from
} else {
printf ("hello from

}

child\n") ;

parent\n") ;

hello from parent

»

»

»

Which one is first?

Child Process m

pid t pid = fork();

}

if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;
}
pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n") ;
} else {

printf ("hello from parent\n") ;
}
pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

hello from child

11

Fork: additional detalls

» Parent and child both run the same code
— Distinguish parent from child by return value from fork

« Start with the same state, but each has private copy
— Memory address space
— Environment variables
— List of currently open files
— Signal handlers, signal mask and list of pending signals

« Scheduling non-determinism
— Who runs first after a fork? Parent? Child? (Both?)
— No order imposed/specified

12

Fork Example #1

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --Xx);

}
printf ("Bye from process %d with x = %$d\n", getpid(), x)

4

13

Fork Example #2

* Both parent and child can continue forking

void fork2 ()

{
printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("Bye\n") ;

LO

Bye
L1 | Bye
Bye
L1 | Bye

14

Fork example #3

void fork4 ()

{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ;
if (fork() '= 0) {
printf ("L2\n") ;
fork () ;
}
}

printf ("Bye\n") ;

LO

L1

L2 a

15

Fork example #4

void forkb5 ()

{
printf ("LO\n") ;
if (fork() == 0)

if (fork() ==

fork () ;

}

}
printf ("Bye\n") ;

{

printf ("L1\n") ;

0) {

printf ("L2\n") ;

LO

L2 | Bye

L1 | Bye

Bye

16

Ending a process

e void exit(int status)

— EXxits a process (current process ceases to exist)
« By convention, status of O is success (non-zero means error)

- atexit () allows programmer to register function to be
executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;
// clean things up
printf ("done\n") ;
}

int main() {
atexit (cleanup) ;
// do useful things
exit (0) ;

17

Synchronizing with child processes

* int wait(int *child status)

— suspends current process until one of its children terminates
— return value is the pid of the child process that terminated

— ifchild status !'= NULL, then the variable it points to will be
set to a status indicating why the child process terminated

18

Synchronizing with child processes

wait: example #1

int main() {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
}
else {
printf ("HP: hello from parent\n");
wait (&child status);

printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;
exit();

HP

CT Bye

19

Synchronizing with child processes
wait: details and example #2

« [f multiple children completed, will take in arbitrary order

« (Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status (see man 2 wait for details)

int main|()
{
pid t pid[N];
int 1i;
int child status;
for (i = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED (child status))

printf ("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid) ;

20

Synchronizing with child processes
Waiting for a specific process
e waitpid(pid, é&status, options)

— suspends current process until specific process terminates
— various options — see man page for details

int main()

{

pid t pid[N];
int i;
int child status;
for (i = 0; i < N; i++) {
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
}
for (i = 0; i < N; i++) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status)) /* Child terminated due to call to exit */
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status)) ;
else
printf ("Child %d terminated abnormally\n", wpid) ;

21

Zombies

 |dea

— When a process terminates, it still consumes system resources
« Various tables maintained by OS

— Called a “zombie”
 Living corpse, half alive and half dead
* Reaping
— Performed by parent on terminated child via wait or waitpid

— Parent is given exit status information
— Kernel discards process

 What if parent doesn’t reap?

— If any parent terminates without reaping a child, then child will be
reaped by a special OS process (often called init)

— So, we only need explicit reaping in long-running processes
* e.g., shells and servers

22

Zombies — Example

int main ()
{
if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",

getpid())

linux> ./forks & exit (0) ;
[1] 6639 } else {
Running Parent, PID = 6639 printf ("Running Parent, PID = %d\n",
Terminating Child, PID = 6640 . getpid());
1inux> DS while (1)

* p ; /* Infinite loop */

PID TTY TIME CMD }

6585 ttyp9 00:00:00 tesh |

6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>

s s - ps shows child process as
linux> kill 6639 ” ;
[1] Terminated defunct
linux> ps

PID TTY TIME CMD

6585 ttyp9 00:00:00 tesh » Killing parent allows child to

6642 ttyp9 00:00:00 ps be reaped by init
23

Loading and running programs

* int execve(char *filename, char *argv[], char *envp)

« Completly reconfigures the image of the calling process

 Loads and runs
— Executable £ilename
— With argument list argv (NULL terminated)
— By convention, argv0 should be the name of the executable file
— And environment variable list envp

« Does not return! (unless error)

« Overwrites process memory address space, keeps pid

« Environment variables
— “name=value” strings

25

Loading and running programs (continued)

Stack

kernel virtual memory

Null-terminated
environment
variable strings

Null-terminated
commandline
arg strings

unused

stack

envp[n] = NULL

I
f

envp[n-1]

Memory mapped region
for shared libraries

;;ivp[O]

argv[argc] = NULL

I

argv[argc-1]

runtime heap (via malloc)

;;'gv[O]

uninitialized data (.bss)

Linker variables

initialized data (.data)

program text (.text)

envp

forbidden

argv

argc

26

Execve arguments: example

envp[n] = NULL

envp[n-1]

;;1vp[0]

argv[argc] = NULL

argv[argc-1]

;;‘gv[O]

“PWD=/usr/smith”
“PRINTER=iron”
“USER=smith”

“/usr/include”
“—lt”
“ls”

27

execl and exec family

int execl (char *path, char *arg0, char *argl,
., (char*)NULL)

Loads and runs executable at path with args arg0, argl, ...)
— path is the complete path of an executable object file

— By convention, arg0 is the executable object file
— “Real” arguments to the program start with argl, etc.
— List of args is terminated by a (char*)NULL argument

— Environment (implicitly) taken from char **environ (an automatically
defined global variable), which points to an array of “hame=value”
strings

28

execl and exec family (continued)

« Family of functions includes execv, execve, execvp, execl,
execle, execlp

 These functions only differ in terms of interface; their purpose
is the same (loading and running a new process, in the context
of the current process)

 Usually, execve is the only system call
— The other functions are implemented as library wrappers

« Semantics of the suffixes

— v (vector): pass arguments as (NULL-terminated) array of pointers

— 1 (list): pass arguments as (NULL-terminated) list of pointers (i.e., the
function has a variable number of arguments)

— p (path): search executable file name in the PATH (otherwise, full path
must be provided)

— e (environment): explicitly provide new environment (otherwise, use the
current environment pointed by environ)

29

execl: example

int main() {

int res;
if (fork() == 0) {
res = execl (" /usr/bin/cp", "cp",

1A foo" , "bar" ,

(char*)NULL) ;
if (res < 0) {

printf ("error: execl failed\n");
exit(-1);

}
}

wait (&res) ;

if (WIFEXITED (res) && (WEXITSTATUS (res) ==

printf ("copy completed successfully\n");
} else {

printf ("copy failed\n");
}

exit (0) ;

0)) {

30

Wrap-up: mini-shell example

« A shell is an application program that runs programs on behalf of the user
— Interpreted shell scripts (not detailed here)
— Built-in commands (e.g., c¢d)
— External binary programs

« Examples: tcsh, bash

int main|()

{
char cmdline [MAXLINE] ;

Execution is a sequence of

while (1) f{ read/evaluate steps

/* read */
printf ("myshell> ") ;
Fgets (cmdline, MAXLINE, stdin);
if (feof(stdin))
exit (0) ;

/* evaluate */
eval (cmdline) ;

Wrap-up: mini-shell example (continued)

void eval (char *cmdline)

{ char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid t pid; /* process id */

bg = parseline(cmdline, argv)
/* builtin command handles internal commands such as ‘cd */
if (!builtIh_gommand(argv)) {
if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%$s: Command not found.\n", argv[0]);
exit (0) ;

}

if ('bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix error ("waitfg: waitpid error");
}
else /* otherwise, don't wait for bg job */
printf ("%d %s", pid, cmdline) ;

32

What is a “background job™?

« Users generally run one command at a time
— Type command, read output, type another command

« Some programs run “for a long time”

— Example: “delete this file in two hours”
% sleep 7200; rm /tmp/junk # shell stuck for 2 hours

* A “background” job is a process we don't want to wait for
% (sleep 7200 ; rm /tmp/junk) &
[

% # ready for next command

33

Problem with mini-shell example

« Shell correctly waits for and reaps foreground jobs

« But what about background jobs?

Will become zombies when they terminate

Will never be reaped because shell (typically) will not terminate

Will create a memory leak that could theoretically run the kernel out of
memory

Modern Unix: once you exceed your process quota, your shell can't run
any new commands for you: fork () returns -1

« Solution: asynchronously notify the shell when a child process
terminates

Using “Unix signals” (details on this mechanism soon)

34

Outline

e |ntroduction

* Basic process management interface from the
user-level

» Kernel-level process management

35

Implementing processes

The OS kernel keeps a data structure for each process

— Generic name: Process control block (PCB)
— Sometimes named differently, e.g., task struct in Linux

Tracks states of the process
— Running, ready (runnable), blocked, etc.

Includes information necessary to run

— Saved context (registers ...)

— Information about virtual memory (memory region descriptors,
pointer to page tables ...)

— Information about open files and memory-mapped files

Various other data about the process

— Credentials (user/group ID), signal mask, controlling terminal,
priority, accounting statistics, whether being debugged, ...

36

Fork revisited — How does it work internally?

« Create and initialize kernel data structures about the new
process, such as:
— Process control block (PCB) and corresponding pid

— Open file descriptors and memory mapped files
* Inherited from parent — each process can close them independently

« Create and initialize virtual memory address space
— For efficiency, the whole address space of the parent process is not
copied
— Instead, only copy memory region descriptors and page tables

— Then, use Copy-on-Write (CoW) to track and support changes
between parent and child address spaces

« Mark PTEs of writeable regions as read-only
» Flag region descriptors for these areas as private “copy-on-write”
« Writes by either process to these pages will cause page faults

 Fault handler recognizes copy-on-write, makes a copy of the page,
and restores write permissions 37

Fork revisited — How does it work internally?
(continued)

 Conclusion

— Thanks to CoW, copies of memory pages are
deferred until absolutely necessary (i.e., when one of
the processes tries to modify a shared page)

— Important optimization, especially given the fact that
fork is often followed by a call to exec, which

completely reconfigures the contents of the virtual
memory address space

38

exec revisited

To run a new program prog in the
current process using exec () :

Free the region descriptors and

page tables for the existing memory

regions each .
process

Create new region descriptors Oxc0... \

and page tables according to the
contents of the new executable file
— Stack, BSS, data, text, shared libs.

— Text and data backed by ELF
executable object file

— BSS and stack initialized to zero brk

%esp =

process-specific data
structures
(page tables,
task and mm structs)

physical memory

kernel code/data/stack

stack

!
f

Memory mapped region
for shared libraries

I

— Shared libraries (e.g., 1ibc)

Set PC to entry point: main
function in . text

— The kernel will fault in code, data

pages as needed 0

A 4

runtime heap (via malloc)

kernel
VM
<«——demand-zero

process
VM

e .data

D text

libec.so

uninitialized data (.bss)

<+«— demand-zero

initialized data (.data)

program text (.text)

forbidden

e .data
] text
prog

39

Process states

admitted interrupt

scheduler dispatch

« A process can be in one of several states
— New/terminated: at beginning/end of life
— Running — currently executing (or will execute on kernel return)
— Ready — can run, but kernel has chosen different process to run
— Waiting — needs external event (e.g., end of disk operation) to proceed

I/O or event completion I/O or event wait

« Which process should the kernel run?

— If non runnable, run idle loop, if a single process runnable, run this one
— If more than one runnable process, must make scheduling decision

40

CPU scheduling

admitted

interrupt

scheduler dispatch

« Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

I/O or event completion I/O or event wait

* Non-preemptive schedules use only 1 & 4
* Preemptive schedulers run at all four points

41

Scheduling criteria

« A few important criteria

— Throughput: Number of processes that complete per time unit
(higher is better)

— Turnaround time: Time for each process to complete (lower is
better)

— Response time: time from request to first response (e.g., key
press to character echo) (lower is better)

* The above criteria are affected by secondary criteria

— CPU utilization: fraction of time that the CPU spends doing
productive work (i.e., not idle)

— Waiting time: time that each process spends waiting in ready
queue

42

Scheduling

How to pick which process to run?

Scan process table for first runnable?

— Expensive. Weird priorities (small pids better)
— Divide into runnable and blocked processes

FIFO?

— Put process on back of list, pull them off from front

>

— T

Priority?

— Give some processes a better shot at the CPU

43

Scheduling policy

* Want to balance multiple goals. For example:

Fairness: don't starve processes

Priority: reflect relative importance of processes
Deadlines: must do x (e.g., play audio) by certain time
Reactivity: minimize response time

Throughput : want good overall performance (e.g., number of
processes completed per time unit)

Efficiency: minimize overhead of scheduler itself

* No universal policy

Many objectives — cannot optimize for all
Conflicting goals (e.g., throughput or priority versus fairness)

45

Preemption

A process can be preempted when kernel gets control — There
are several such opportunities:

A running process can transfer control to kernel through a trap
— System call (including exit), page fault, illegal instruction, etc.
— May put current process to sleep — e.g., read from disk
— May make other process runnable — e.g., fork, write to pipe
— (May destroy current process)
* Periodic timer interrupt
— If running process used up time quantum, schedule another
 Device interrupt
— E.g., disk request completed, or packet arrived on network
— A previously waiting process becomes runnable
— Schedule if higher priority than current running process

« Recall that changing the running process is called a context switch
46

Context switch details

« Implementation is very machine (processor) dependent. Typical
things include:

Save/restore general registers
Save/restore floating point or other special registers

Switch virtual address translations (e.g., pointer to root of paging
structure)

Save/restore condition codes (flags)
Save/restore program counter

* Non-negligible cost

Save/restore of floating point registers is expensive
« Optimization: only saved if process used floating point operations

May require flushing TLB (memory translation hardware)
« Optimization: do not flush the kernel’s own (global) data from the TLB
Usually causes L1/L2/L3 cache misses (switches working sets)

47

