
Processes
(part 1)

M1 MOSIG – Operating System Design

Renaud Lachaize

Acknowledgments

• Many ideas and slides in these lectures were inspired by
or even borrowed from the work of others:
– Arnaud Legrand, Noël De Palma, Sacha Krakowiak
– David Mazières (Stanford)

• (many slides/figures directly adapted from those of the CS140
class)

– Remzi and Andrea Arpaci-Dusseau (U. Wisconsin)
– Randall Bryant, David O’Hallaron, Gregory Kesden, Markus

Püschel (Carnegie Mellon University)
• Textbook: Computer Systems: A Programmer’s Perspective (2nd

Edition) a.k.a. “CSAPP”
• CS 15-213/18-243 classes (many slides/figures directly adapted

from these classes)
– Textbooks (Silberschatz et al., Tanenbaum)

2

Outline

• Introduction

• Basic process management interface from the
user-level

• Kernel-level process management

3

Processes

• A process is an instance of a running program
• Modern OSes run multiple programs simultaneously
• Examples (can all run simultaneously)

– gcc file1.c – compiler running on file 1
– gcc file2.c – compiler running on file 2
– emacs – text editor
– firefox – web browser

• Non-examples (implemented as one process):
– Multiple firefox windows or emacs frames (still one process)

• Why processes?
– Simplicity of programming
– Higher CPU throughput, lower latency (details on next slide)

4

Speed

• Multiple processes can increase CPU utilization
– Overlap one process with another’s wait

• Multiple processes can reduce latency
– Running A then B requires 100 sec for B to complete

– Running A and B concurrently makes B finish faster

6

A process’s view of the world

• Each process has is own view of the machine
– Its own address space
– Its own open files
– Its own virtual CPU (through preemptive multitasking)

• A given (virtual) address has a different “meaning” for two distinct
processes

• This greatly simplifies the application programming model
– gcc does not care that firefox is running

• Sometimes interaction between processes is necessary
– Simplest is through files: emacs edits file, gcc compiles it
– More complicated: Shell/command, Window manager/application

8

Outline

• Introduction

• Basic process management interface from the
user-level

• Kernel-level process management

9

Creating a new process

• pid_t fork(void)
– Creates a new process (child process) that is identical

to the calling process (parent process)
– Returns 0 to the child process
– Returns the child’s pid to the parent process

– fork is interesting (and often confusing) because it is
called once but returns twice

10

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Understanding fork

11

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Process n
pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Child Process m

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid = m

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid = 0

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

hello from parent hello from childWhich one is first?

Fork: additional details

• Parent and child both run the same code
– Distinguish parent from child by return value from fork

• Start with the same state, but each has private copy
– Memory address space
– Environment variables
– List of currently open files
– Signal handlers, signal mask and list of pending signals

• Scheduling non-determinism
– Who runs first after a fork? Parent? Child? (Both?)
– No order imposed/specified

12

Fork Example #1

13

void fork1()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {
 printf("Child has x = %d\n", ++x);
 } else {
 printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

Fork Example #2

• Both parent and child can continue forking

14

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

L0 L1

L1

Bye

Bye

Bye

Bye

Fork example #3

15

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye

Bye

Fork example #4

16

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 fork();
 }
 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

Ending a process

• void exit(int status)
– Exits a process (current process ceases to exist)

• By convention, status of 0 is success (non-zero means error)
– atexit() allows programmer to register function to be

executed upon exit

17

void cleanup(void) {
 printf("cleaning up\n");
 ... // clean things up
 printf("done\n");
}

int main() {
 atexit(cleanup);
 ... // do useful things
 exit(0);
}

Synchronizing with child processes

• int wait(int *child_status)

– suspends current process until one of its children terminates

– return value is the pid of the child process that terminated

– if child_status != NULL, then the variable it points to will be
set to a status indicating why the child process terminated

18

Synchronizing with child processes
wait: example #1

19

int main() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit();
}

HP

HC Bye

CT Bye

Synchronizing with child processes
wait: details and example #2
• If multiple children completed, will take in arbitrary order
• Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status (see man 2 wait for details)

20

int main()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

Synchronizing with child processes
Waiting for a specific process
• waitpid(pid, &status, options)

– suspends current process until specific process terminates
– various options – see man page for details

21

int main()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++) {
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 }
 for (i = 0; i < N; i++) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status)) /* Child terminated due to call to exit */
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

Zombies

• Idea
– When a process terminates, it still consumes system resources

• Various tables maintained by OS
– Called a “zombie”

• Living corpse, half alive and half dead

• Reaping
– Performed by parent on terminated child via wait or waitpid
– Parent is given exit status information
– Kernel discards process

• What if parent doesn’t reap?
– If any parent terminates without reaping a child, then child will be

reaped by a special OS process (often called init)
– So, we only need explicit reaping in long-running processes

• e.g., shells and servers
22

Zombies – Example

23

linux> ./forks &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

• ps shows child process as
“defunct”

• Killing parent allows child to
be reaped by init

int main()
{
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 }
}

Loading and running programs
• int execve(char *filename, char *argv[], char *envp);

• Completly reconfigures the image of the calling process

• Loads and runs
– Executable filename
– With argument list argv (NULL terminated)
– By convention, argv0 should be the name of the executable file
– And environment variable list envp

• Does not return! (unless error)

• Overwrites process memory address space, keeps pid

• Environment variables
– “name=value” strings

25

Loading and running programs (continued)

26

Null-terminated
environment
variable strings

unused

Null-terminated
commandline
arg strings

envp[n] = NULL
envp[n-1]

envp[0]
…

Linker variables

argv[argc] = NULL
argv[argc-1]

argv[0]
…

envp

argc
argv

Stack

kernel virtual memory

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden0

Execve arguments: example

27

envp[n] = NULL
envp[n-1]

envp[0]
…

argv[argc] = NULL
argv[argc-1]

argv[0]
…

“ls”
“-lt”
“/usr/include”

“USER=smith”
“PRINTER=iron”
“PWD=/usr/smith”

execl and exec family

• int execl(char *path, char *arg0, char *arg1,
 ..., (char*)NULL)

• Loads and runs executable at path with args arg0, arg1, ...)
– path is the complete path of an executable object file

– By convention, arg0 is the executable object file

– “Real” arguments to the program start with arg1, etc.

– List of args is terminated by a (char*)NULL argument

– Environment (implicitly) taken from char **environ (an automatically
defined global variable), which points to an array of “name=value”
strings

28

execl and exec family (continued)

• Family of functions includes execv, execve, execvp, execl,
execle, execlp

• These functions only differ in terms of interface; their purpose
is the same (loading and running a new process, in the context
of the current process)

• Usually, execve is the only system call
– The other functions are implemented as library wrappers

• Semantics of the suffixes
– v (vector): pass arguments as (NULL-terminated) array of pointers
– l (list): pass arguments as (NULL-terminated) list of pointers (i.e., the

function has a variable number of arguments)
– p (path): search executable file name in the PATH (otherwise, full path

must be provided)
– e (environment): explicitly provide new environment (otherwise, use the

current environment pointed by environ)
29

execl: example

30

int main() {
 int res;
 if (fork() == 0) {
 res = execl("/usr/bin/cp", "cp",
 "foo", "bar", (char*)NULL);
 if (res < 0) {
 printf("error: execl failed\n");
 exit(-1);
 }
 }
 wait(&res);
 if (WIFEXITED(res) && (WEXITSTATUS(res) == 0)) {
 printf("copy completed successfully\n");
 } else {
 printf("copy failed\n");
 }
 exit(0);
}

Wrap-up: mini-shell example

• A shell is an application program that runs programs on behalf of the user
– Interpreted shell scripts (not detailed here)
– Built-in commands (e.g., cd)
– External binary programs

• Examples: tcsh, bash

31

int main()
{
 char cmdline[MAXLINE];

 while (1) {
 /* read */
 printf("myshell> ");
 Fgets(cmdline, MAXLINE, stdin);
 if (feof(stdin))
 exit(0);

 /* evaluate */
 eval(cmdline);
 }
}

Execution is a sequence of
read/evaluate steps

Wrap-up: mini-shell example (continued)

32

void eval(char *cmdline)
{ char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 /* builtin_command handles internal commands such as ‘cd’ */
 if (!builtin_command(argv)) {
 if ((pid = Fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {
 printf("%s: Command not found.\n", argv[0]);
 exit(0);
 }
 }

 if (!bg) { /* parent waits for fg job to terminate */
 int status;
 if (waitpid(pid, &status, 0) < 0)
 unix_error("waitfg: waitpid error");
 }
 else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);
 }
}

What is a “background job”?

• Users generally run one command at a time
– Type command, read output, type another command

• Some programs run “for a long time”
– Example: “delete this file in two hours”
% sleep 7200; rm /tmp/junk # shell stuck for 2 hours

• A “background” job is a process we don't want to wait for
% (sleep 7200 ; rm /tmp/junk) &
[1] 907
% # ready for next command

33

Problem with mini-shell example

• Shell correctly waits for and reaps foreground jobs

• But what about background jobs?
– Will become zombies when they terminate
– Will never be reaped because shell (typically) will not terminate
– Will create a memory leak that could theoretically run the kernel out of

memory
– Modern Unix: once you exceed your process quota, your shell can't run

any new commands for you: fork() returns -1

• Solution: asynchronously notify the shell when a child process
terminates
– Using “Unix signals” (details on this mechanism soon)

34

Outline

• Introduction

• Basic process management interface from the
user-level

• Kernel-level process management

35

Implementing processes

• The OS kernel keeps a data structure for each process
– Generic name: Process control block (PCB)
– Sometimes named differently, e.g., task_struct in Linux

• Tracks states of the process
– Running, ready (runnable), blocked, etc.

• Includes information necessary to run
– Saved context (registers ...)
– Information about virtual memory (memory region descriptors,

pointer to page tables ...)
– Information about open files and memory-mapped files

• Various other data about the process
– Credentials (user/group ID), signal mask, controlling terminal,

priority, accounting statistics, whether being debugged, ...

36

Fork revisited – How does it work internally?

• Create and initialize kernel data structures about the new
process, such as:
– Process control block (PCB) and corresponding pid
– Open file descriptors and memory mapped files

• Inherited from parent – each process can close them independently

• Create and initialize virtual memory address space
– For efficiency, the whole address space of the parent process is not

copied
– Instead, only copy memory region descriptors and page tables
– Then, use Copy-on-Write (CoW) to track and support changes

between parent and child address spaces
• Mark PTEs of writeable regions as read-only
• Flag region descriptors for these areas as private “copy-on-write”
• Writes by either process to these pages will cause page faults
• Fault handler recognizes copy-on-write, makes a copy of the page,

and restores write permissions 37

Fork revisited – How does it work internally?
(continued)

• Conclusion

– Thanks to CoW, copies of memory pages are
deferred until absolutely necessary (i.e., when one of
the processes tries to modify a shared page)

– Important optimization, especially given the fact that
fork is often followed by a call to exec, which
completely reconfigures the contents of the virtual
memory address space

38

exec revisited

39

kernel code/data/stack

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

forbidden
0

%esp
process
 VM

brk

0xc0…

physical memorysame for
each

process

process-specific data
structures

(page tables,
task and mm structs)

kernel
VM

To run a new program prog in the
current process using exec():
• Free the region descriptors and

page tables for the existing memory
regions

• Create new region descriptors
and page tables according to the
contents of the new executable file
– Stack, BSS, data, text, shared libs.
– Text and data backed by ELF

executable object file
– BSS and stack initialized to zero
– Shared libraries (e.g., libc)

• Set PC to entry point: main
function in .text
– The kernel will fault in code, data

pages as needed

.data
.text

prog

demand-zero

demand-zero

libc.so

.data
.text

Process states

• A process can be in one of several states
– New/terminated: at beginning/end of life
– Running – currently executing (or will execute on kernel return)
– Ready – can run, but kernel has chosen different process to run
– Waiting – needs external event (e.g., end of disk operation) to proceed

• Which process should the kernel run?
– If non runnable, run idle loop, if a single process runnable, run this one
– If more than one runnable process, must make scheduling decision

40

CPU scheduling

• Scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from new/waiting to ready
4. Exits

• Non-preemptive schedules use only 1 & 4
• Preemptive schedulers run at all four points

41

Scheduling criteria

• A few important criteria
– Throughput: Number of processes that complete per time unit

(higher is better)
– Turnaround time: Time for each process to complete (lower is

better)
– Response time: time from request to first response (e.g., key

press to character echo) (lower is better)

• The above criteria are affected by secondary criteria
– CPU utilization: fraction of time that the CPU spends doing

productive work (i.e., not idle)
– Waiting time: time that each process spends waiting in ready

queue

42

Scheduling

• How to pick which process to run?

• Scan process table for first runnable?
– Expensive. Weird priorities (small pids better)
– Divide into runnable and blocked processes

• FIFO?
– Put process on back of list, pull them off from front

• Priority?
– Give some processes a better shot at the CPU

43

Scheduling policy

• Want to balance multiple goals. For example:
– Fairness: don’t starve processes
– Priority: reflect relative importance of processes
– Deadlines: must do x (e.g., play audio) by certain time
– Reactivity: minimize response time
– Throughput : want good overall performance (e.g., number of

processes completed per time unit)
– Efficiency: minimize overhead of scheduler itself

• No universal policy
– Many objectives – cannot optimize for all
– Conflicting goals (e.g., throughput or priority versus fairness)

45

Preemption

• A process can be preempted when kernel gets control – There
are several such opportunities:

• A running process can transfer control to kernel through a trap
– System call (including exit), page fault, illegal instruction, etc.
– May put current process to sleep – e.g., read from disk
– May make other process runnable – e.g., fork, write to pipe
– (May destroy current process)

• Periodic timer interrupt
– If running process used up time quantum, schedule another

• Device interrupt
– E.g., disk request completed, or packet arrived on network
– A previously waiting process becomes runnable
– Schedule if higher priority than current running process

• Recall that changing the running process is called a context switch
46

Context switch details

• Implementation is very machine (processor) dependent. Typical
things include:
– Save/restore general registers
– Save/restore floating point or other special registers
– Switch virtual address translations (e.g., pointer to root of paging

structure)
– Save/restore condition codes (flags)
– Save/restore program counter

• Non-negligible cost
– Save/restore of floating point registers is expensive

• Optimization: only saved if process used floating point operations
– May require flushing TLB (memory translation hardware)

• Optimization: do not flush the kernel’s own (global) data from the TLB
– Usually causes L1/L2/L3 cache misses (switches working sets)

47

