
Training week: System

Master M1 MOSIG

2025

1 About text editors

Many text editors are usually available on a Linux distribution. Some of them are more specifically
designed to facilitate code editing (providing functionalities ranging for simple syntax highlight-
ing to advanced debugging features).

Bellow we list a few of them that you can try out.

• Text editors

– Gedit: A simple text editor

– Vim: A rich text editor. Supports many programming languages. Works mostly with
keyboard shortcuts.

– Emacs: A competitor of vim

• Integrated development environments

– VS Code (or its VSCodium variant)

– Code::Blocks

– Geany

– Kate

2 About man pages

Man pages are the usual way of getting access to documentation in a Linux system. The man
pages provide documentation for Commands, System calls and Library functions (in particular
for the C standard library). For instance, to access the documentation of command ls, simply use
in a terminal:

man ls

1



Note that a command, a system call and/or a library function may have the same name. To deal
with this issue, the man pages are divided into sections. The three main sections are: (1) the
commands; (2) the system calls; (3) the library functions. To access the documentation for the
system call open, use:

man 2 open

Some websites also host online versions of the man pages. See for example:

• https://man7.org/linux/man-pages/

• https://manpages.ubuntu.com

• https://manpages.debian.org

Note: We strongly advise you to read the english version (which is usually the original version) of
the man pages. Indeed, the quality (accuracy and freshness) of the translations in other languages
may vary.

3 About version-control systems: Git

A version-control system such as Git offers several features that can be very useful when working
on projects and practical sessions. With git, you can:

• Keep track of the modifications in your code. This can help you to undo modifications that
break your code and more generally to restore any intermediate versions of your code. This
also allows you to easily identify the modifications that have been made between different
versions.

• Share your code with others. You can give access to your projects to other persons which
can simplify team work.

• Manage multiple versions of the same project through branches (https://www.
atlassian.com/git/tutorials/using-branches), which can allow multiple per-
sons to work on the same project in parallel without creating inconsistencies.

Last but not least, since Git services are usually hosted on remote servers, pushing your code on
a Git server avoids losing your work in case of a crash of your machine and allows you accessing
your code from different places easily.

Platforms for hosting projects such as GitHub or GitLab provide Git-based management of
source code as their basic service. Creating private projects (projects that only you and your team-
mates can access) is supported both in GitHub and GitLab free offer.

We suggest you to create a project (on the platform of your choice) on which you are going to store
the code created during this lab. After creating a project through the web interface, we recall that
the main git commands are:

2

https://man7.org/linux/man-pages/
https://manpages.ubuntu.com
https://manpages.debian.org
https://www.atlassian.com/git/tutorials/using-branches
https://www.atlassian.com/git/tutorials/using-branches


• git clone to get a working copy of a repository

• git add to select the modifications to be tracked by git

• git commit to save the selected modifications in the local copy of the repository

• git push to send the modifications present in the local copy of the repository to the remote
copy

• git pull to bring the modifications made by others to the remote copy of the repository
into your local copy.

4 Shell

The goal of this exercise is to practice with the shell. To this end, please write the commands
required to run the following operations:

1. In your home directory, create a directory called training_system. In this directory, create
another directory called exercise4 and move into this directory.

2. In this directory, create a file file1.txt where you write a small text.

3. Count the number of lines in this file and display the result on the screen.

4. List the content of your home directory and store the result in a file exercise4/file2.txt

5. Verify experimentally how many of the last lines of a file the command tail displays by
default. Of course, you should not count manually.

6. Count the number of lines including the word "warning" in the files with a ".log" extension
in directory /var/log

7. Your previous command might display some error messages in the terminal. How can you
get rid of these messages?

8. Still related to question 6 above: how to write the output of your command (the command
that lists the lines with the word "warning"), including the error messages, to a file?

5 Fork/Wait

Write a program that executes n processes using fork(). Each child process should do a sleep()
followed by printing its own pid to stdout. Then each child exits. What do you have to take care
of to ensure that the program is terminated before you can start another program in the same
terminal?

3



6 Fork/Exec

Write a program that creates 2 processes. The second process should be created via fork(). After
the fork, the child should execute (via execve or another primitive of the same family - see man 2
execve and man 3 exec) the binary /bin/ls. The parent process should print a "hello world"
message after forking. How many "hello world" messages will be printed?

7 Reading/Writing to a file

Write a C program that performs a copy of file1.txt (created previously) into a new file
file_copy.txt.

To solve this exercise, use system calls: open(), close(), read(), write(), etc.

8 Simple Pipe

Write a program that creates two processes. Create a pipe and send the pid of the parent process
to the child process. Let the child and the parent print the pid of the parent.

9 Drawing random numbers

(This exercise is a pre-requisite for the next one.)
We would like to write a program executed by n processes: each process picks a random number
and prints it at the screen. Here is an example:

$ ring1 6
process pid 25387 node 2 val = 1430826605
process pid 25388 node 3 val = 48523501
process pid 25389 node 4 val = 822619539
process pid 25390 node 5 val = 1591287596
process pid 25385 node 0 val = 2047288621
process pid 25386 node 1 val = 1731323093
$

This program is composed of 6 processes. The number of processes should be a parameter of the
program. The processes are identified by their pid (returned by fork), a number (the order of
creation) and a random number (generated with rand). In order to have different sequences of
random values in different executions, read carefully the man page of srand (man srand).

10 Pipes 2 – Determine the winner

The goal is to adapt the previous program in order to decide which process generates the biggest
random number. To do this, we will use an election algorithm. We will interconnect the processes

4



with pipes so as to generate a ring topology. This means that process 0 will be connected to process
1 through a pipe, process 1 will be connected to process 2 through another pipe, etc. The last process
(n-1) will be connected to process 0.

When the processes and the pipes are created, process 0 will send its random value to process 1.
Process 1 will compare it with its proper random value and will send the bigger one to process 2.
The other processes will work in the same way. At the end, process 0 will receive the biggest value,
as well as the information concerning the pid and the number of the process that generated it.

$ ring2 6
process pid 26603 node 1 val = 982695543
process pid 26604 node 2 val = 679092432
process pid 26605 node 3 val = 1441867048
process pid 26606 node 4 val = 1135529882
process pid 26607 node 5 val = 1906462017
process pid 26602 node 0 val = 208930720
the winner is 1906462017 pid 26607 node 5
$

5


	About text editors
	About man pages
	About version-control systems: Git
	Shell
	Fork/Wait
	Fork/Exec
	Reading/Writing to a file
	Simple Pipe
	Drawing random numbers
	Pipes 2 – Determine the winner

