System Programming

Processes, memory and communication

Thomas Ropars

thomas.ropars@univ-grenoble-alpes.fr

2025

mailto:thomas.ropars@univ-grenoble-alpes.fr

The slides are available at:

https://ml-mosig-os.gitlab.io/

https://m1-mosig-os.gitlab.io/

References

Main references:

® Advanced Programming in the Unix Environment by R.
Stevens

® The Linux Programming Interface by M. Kerrish

® Operating Systems: Three Easy Pieces by R. Arpaci-Dusseau
and A. Arpaci-Dusseau (introduction chapter)

e Computer Systems: A Programmer's Perspective by R. Bryant
and D. O'Hallaron

The content of these lectures is inspired by:
® The lecture notes of Prof. J.F. Mehaut.

® The lecture notes of R. Lachaize.

Agenda

What is an operating system?
Unix File System

The Shell

Processes

Inputs/Outputs

Agenda

What is an operating system?

Purpose of an operating system

Operations run by a program:
® Executing instructions
® Reading/writing to memory
¢ Reading/writing files

® Accessing devices

The operating system is here to make it easier to write and run
programs, and to manage resources.

What is an operating system?

Figure by R. Bryant and D. O'Hallaron

The operating system is a layer of software interposed between the
application program and the hardware

Application programs
- Software
Operating system
Processor Main memory I/O devices } Hardware

Two main roles:
e Virtualization

® Resource management

Virtualization

Transforms the physical resources into virtualized resources:

® |t hides the low-level interface of the hardware and provides
higher-level abstractions:

Virtualization

Transforms the physical resources into virtualized resources:

® |t hides the low-level interface of the hardware and provides
higher-level abstractions:
easy to use

more general (hides the differences between different
hardwares)
powerful

prevents programs from misusing the hardware

It provides an API (Application Programming Interface) that
allows user programs to interact with OS services:

® A set of libraries

® System calls

Resource management

The OS allows several programs to run on the machine at the
same time.

Programs can access resources (CPU, memory, disks, etc.) at the
same time. The OS should ensure:

® fairness
o efficiency

® security

A bit of history

UNIX
® Created by Ken Thompson from Bell Labs in 1969.
® Made available for free to universities in the 70's
® Written in C

® A large set of command to run in a shell (command-line
interpreter)

e UNIX systems: Open BSD, Free BSD, Linux, MAC OS X, etc

Main ideas
® Multi-tasks and Multi-users

® Modular design (set of simple tools)
® A unified file system

Everything is a file
e Cooperating processes

Inexpensive process spawning and easy Inter-Process
Communication

10

A bit of history

POSIX
® In the 80's, UNIX vendors start adding incompatible features
® |EEE specification of the API of operating systems (1988)
¢ Portable Operating System Interface (+X for UNIX)

Linux
® Implementation of a UNIX system from scratch
® By Linus Torvalds
® Released as free software in 1991

® Used by big internet companies (Google, Amazon, Facebook,
etc.)

11

Agenda

Unix File System

12

The file system

On a Unix system, the file system is an important building block:

® The file system is the main means of communication®

The file system is a unified tree.

® The root directory is called " /"

1C)uoting D. Ritchie and K. Thompson

13

File types

It contains different types of objects:
® Regular files
® Directories
® Device files

® Pipes

Symbolic links

The file system tree

| bash | | vmh‘nuzl | group | | passwd |

regular file

15

About the file system

Filename
® Any character can appear in a filename except " /".

® [t is not recommended to have white spaces
® Recommended to avoid exotic characters:
Portable filename character set: [-._a-zA-Z0-9]

Default filenames
Every directory contains at least two entries:

"non

e " (dot): A link to the current directory

"non

e "." (dot dot): A link to the parent directory

16

About the file system

Pathname
® A series of filenames separated by slashes (/)

All but the last of these component filenames identifies a
directory

The last component of a pathname may identify any type of
file, including a directory

® An absolute path starts with " /":

Specifies a location with respect to the root directory
/home/avr/java

® A relative path :

Specifies a location with respect to the current directory
../../../usr/include

17

More vocabulary

e Working directory: The directory from which relative paths
are interpreted.

> Every process has a working directory.

® Home directory: The working dir at the time the user logs in.

18

Conventional directory layout

man hier

Some conventions exists for file system organization. Here is a
non-exhaustive list:

e /: The top level directory referred to as root. Contains all files
in the file system.

/bin: Stands for binaries and contains certain fundamental
utilities

/dev: Stands for devices. Contains files that represent
input/output devices

/etc: Stands for "et cetera”. Contains system-wide
configuration files and system databases.

/home: Contains user home directories on Linux

19

Conventional directory layout

e /lib: Contains the shared libraries needed by programs in /bin.

¢ /media: Default mount point for removable devices, such as
USB sticks.

® /proc: procfs virtual file system showing information about
processes as files

e /tmp: A place for temporary files not expected to survive a
reboot

e /usr: Stands for "user file system”. It holds executables,
libraries, and shared resources that are not system critical.

e /var: Stands for variable. A place for files that may change
often (ex: log files).

20

Agenda

The Shell

21

Presentation

User interface for OS services:
® Command-line interpreter

e Scripting language (to execute a set of commands)

Bash
® Default shell on most Linux systems
® Extends the Bourne Shell

® Many other shells exist

22

A view of a UNIX system

Figure by R. Stevens

applications

23

Shell functionalities

Piping (|)

Control structures (if, for)
Variables

Filename wildcarding (*)
[/O redirection (<, >)

24

Some useful commands?

Manipulating files and dirs
Is (listing directory content), cd (changing working directory),
mkdir (create dir), cp (copy file/directory), mv (move
file/directory), rm (delete file/directory)

Working with files
less (view file content), cat (concatenate files), head/tail
(print first/last part of a file), file (check file type)

Filtering
uniq (omit duplicate lines), wc (count lines/words), grep
(print lines matching a pattern)

® Documentation

man (display documentation)

'For more information: http://linuxcommand.org
25

http://linuxcommand.org

Some examples

man uniq

26

Some examples

man uniq

® Displays the documentation of the uniq command

1s *.txt

26

Some examples

man uniq

® Displays the documentation of the uniq command

1s *.txt

® Lists all files in current directory with suffix .txt

grep malloc *.txt

26

Some examples

man uniq

® Displays the documentation of the uniq command

1s *.txt

® Lists all files in current directory with suffix .txt

grep malloc *.txt

® Prints lines containing the word malloc from files with suffix
.txt in current directory

26

Some examples

1s | wc -1

27

Some examples

1ls | we -1
® Counts the number of entries in the current directory

® Creation of a pipeline: the standard output of the first
command is redirected to the standard input of the second
command

® 2 processes are created

cat filel.txt | uniq

27

Some examples

1ls | we -1
® Counts the number of entries in the current directory

® Creation of a pipeline: the standard output of the first
command is redirected to the standard input of the second
command

® 2 processes are created
cat filel.txt | uniq

® Qutputs the content of filel.txt while removing adjacent
duplicated lines

27

About inputs and outputs

see man stdin

Each program in a Unix system has 3 streams opened when it is
started:
® stdin
The standard input
Identified by the file descriptor 0
Associated with the keyboard by default in the shell
® stdout
The standard output
Identified by the file descriptor 1
Linked to the screen by default in the shell
® stderr
The standard error
Identified by the file descriptor 2
Linked to the screen by default in the shell

28

Some examples

head filel.txt > file2.txt

29

Some examples

head filel.txt > file2.txt

e Writes the 10 first lines of filel.txt in file2.txt (file2.txt is
overwritten)

® stdout is redirected to file2.txt

1s -1 /usr/bin >> file2.txt

29

Some examples

head filel.txt > file2.txt

e Writes the 10 first lines of filel.txt in file2.txt (file2.txt is
overwritten)

® stdout is redirected to file2.txt

ls -1 /usr/bin >> file2.txt
® Appends the result of the 1s command to file2.txt

1ls -1 /bin/usr 2> error.txt

29

Some examples

head filel.txt > file2.txt

e Writes the 10 first lines of filel.txt in file2.txt (file2.txt is
overwritten)

® stdout is redirected to file2.txt

ls -1 /usr/bin >> file2.txt
® Appends the result of the 1s command to file2.txt

1ls -1 /bin/usr 2> error.txt
® Writes the error messages to file error.txt

® stderr is redirected to error.txt

grep error /var/log/* >output.txt 2>&1

29

Some examples

head filel.txt > file2.txt

e Writes the 10 first lines of filel.txt in file2.txt (file2.txt is
overwritten)

® stdout is redirected to file2.txt

ls -1 /usr/bin >> file2.txt
® Appends the result of the 1s command to file2.txt

1ls -1 /bin/usr 2> error.txt
® Writes the error messages to file error.txt

® stderr is redirected to error.txt

grep error /var/log/* >output.txt 2>&1
® Redirects stdout to file output.txt and stderr to stdout

29

More examples

grep error /var/log/* 2> /dev/null

30

More examples

grep error /var/log/* 2> /dev/null
® Suppresses error messages

® /dev/null is a special file. It is a system device that accepts
input and does nothing with it.

ls /bin /usr/bin | sort | uniq > /tmp/exec_list.txt

30

More examples

grep error /var/log/* 2> /dev/null
® Suppresses error messages

® /dev/null is a special file. It is a system device that accepts
input and does nothing with it.

ls /bin /usr/bin | sort | uniq > /tmp/exec_list.txt

® Lists content of the two directories, sorts the result, removes
the duplicated entries and stores the results in a temporary
file.

30

Agenda

Processes

31

About processes

A process is an instance of a running program
® The program itself is just a file
The set of instructions to execute

® The process is an operating system abstraction of a running
program

Commands to know which programs are running on the system:
® ps: Lists the active processes

® top: Dynamic list of processes with resource usage

32

About processes

The operating system provides to an instance of a program the
illusion that it is the only one running on the system.
® |t appears to have exclusive access to the processor, the
memory, and the 1/O devices.

® The processor appears to execute the instructions in the
program, one after the other, without interruption.

33

About processes

The operating system provides to an instance of a program the
illusion that it is the only one running on the system.

® |t appears to have exclusive access to the processor, the
memory, and the 1/O devices.

® The processor appears to execute the instructions in the
program, one after the other, without interruption.

® However, in practice, there might be many programs running
concurrently on the system.
Web browser, email client, text editor, compiler, system
services (init, syslog, graphical interface, ...)
Multiple instances of the same program might run concurrently
(emacs filel.txt + emacs file2.txt)

33

About memory

Physical memory

® Physical memory is an array of bytes
> Area to read and write data

® A process does not access physical memory directly

Virtual memory
® Each process is provided with its own virtual address space
® The OS translates virtual addresses into physical addresses

® A memory reference within one running program does not
affect the address space of other processes (or the OS itself)

34

Process virtual address space

Figure by Silberschatz et al

max

stack

heap

data

text

35

Process virtual address space

® text section: comprises the compiled program code, read from
the executable file.

® data section: stores global and static variables, allocated and
initialized prior to executing main

® heap: Expends and contracts as a result of dynamic memory
allocation

® stack: Space on the stack is reserved for local variables when
they are declared, and the space is freed up when the variables
go out of scope

36

Process resources

A set of resources is associated with each process:

A unique process id
A process state

A program counter
It point to the next instruction to be executed by the process

CPU registers
Credentials
Information about virtual memory

Information about open files

37

Process state
Figure by Silberschatz et al

admitted terminated

interrupt exit

scheduler dispatch

1/0 or event completion 1/O or event wait

® new: The process is in the stage of being created

® running: currently executing
ready: can run, but kernel has chosen a different process to
run

® waiting: The process cannot run, because it is waiting for
some resource to become available or for some event to occur.
(ex: keyboard input)

® terminated: The process has terminated

Process control

3 sets of functions:

e fork: process creation
® exec: load new executable file

® wait: wait for process termination

39

Creating a new process

* pid_t fork(void)

— Creates a new process (child process) that is identical
to the calling process (parent process)

— Returns 0 to the child process
— Returns the child’s pid to the parent process

pid_t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

- fork is interesting (and often confusing) because it is
called once but returns twice

10

Understanding fork

Process n

Child Process m

pid_t pid = fork();
if (pid == 0) {

»

pid_t pid = fork();
if (pid == 0) {

}

hello from parent

Which one is first?

}

printf("hello from child\n"); printf ("hello from child\n") ;
} else { } else {

printf ("hello from parent\n") ; printf ("hello from parent\n");
} }
pid_t pid = fork(); pid_t pid = fork();
if (pid == 0) { » if (pid == 0) {

printf ("hello from child\n") ; pid=0 printf ("hello from child\n");
} else { } else {

printf ("hello from parent\n") ; printf ("hello from parent\n") ;
} }
pid_t pid = fork(); pid_t pid = fork();
if (pid == 0) { if (pid == 0) {

printf ("hello from child\n"); » printf ("hello from child\n") ;
} else { } else {

printf ("hello from parent\n"); printf ("hello from parent\n");

hello from child

"

Fork: additional details

» Parent and child both run the same code
— Distinguish parent from child by return value from fork

+ Start with the same state, but each has private copy
Memory address space

Environment variables

List of currently open files

Signal handlers, signal mask and list of pending signals

» Scheduling non-determinism
— Who runs first after a fork? Parent? Child? (Both?)
— No order imposed/specified

Ending a process

* void exit (int status)

— Exits a process (current process ceases to exist)
» By convention, status of 0 is success (non-zero means error)

- atexit () allows programmer to register function to be
executed upon exit

void cleanup (void) {
printf ("cleaning up\n") ;
. // clean things up
printf ("done\n") ;
}

int main() {
atexit (cleanup) ;
. // do useful things
exit (0) ;

Synchronizing with child processes

* int wait(int *child status)

— suspends current process until one of its children terminates
— return value is the pid of the child process that terminated

— ifchild_status != NULL, then the variable it points to will be
set to a status indicating why the child process terminated

Synchronizing with child processes
wait: example #1

int main() {
int child status;

if (fork() == 0) {
) printf ("HC: hello from child\n"); HC Bye
else {
printf ("HP: hello from parent\n"); HP CT Bye

wait (&child_status) ;

printf ("CT: child has terminated\n");
}
printf ("Bye\n") ;
exit();

Synchronizing with child processes
wait: details and example #2

If multiple children completed, will take in arbitrary order

Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status (see man 2 wait for details)

int main()

{

pid_t pid|[N];
int i;
int child_status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; i < N; i++) {
pid_t wpid = wait(&child status);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child_status));
else
printf ("Child %d terminated abnormally\n", wpid);

20

Synchronizing with child processes
Waiting for a specific process
* waitpid(pid, &status, options)

— suspends current process until specific process terminates
— various options — see man page for details

int main ()

{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++) {
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
}
for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status)) /* Child terminated due to call to exit */
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf("Child %d terminated abnormally\n", wpid);

21

Zombies

* |dea
— When a process terminates, it still consumes system resources
» Various tables maintained by OS
— Called a “zombie”
« Living corpse, half alive and half dead
* Reaping
— Performed by parent on terminated child via wait or waitpid
— Parent is given exit status information
— Kernel discards process

* What if parent doesn’t reap?

— If any parent terminates without reaping a child, then child will be
reaped by a special OS process (often called init)
— So, we only need explicit reaping in long-running processes
* e.g., shells and servers
22

Loading and running programs

* int execve(char *filename, char *argv[], char *envp);
» Completly reconfigures the image of the calling process

* Loads and runs
— Executable filename
— With argument list argv (NULL terminated)
— By convention, argv0 should be the name of the executable file
— And environment variable list envp

» Does not return! (unless error)
» Overwrites process memory address space, keeps pid

* Environment variables
— “name=value” strings

25

Execve arguments: example

envp[n] = NULL

envp[n-1]

——> “PWD=/usr/smith”

——> “PRINTER=iron”

;.nvp[O]

——> “USER=smith”

argv[argc] = NULL

argv[argc-1]

——> “/usr/include”

“_1¢”

;;'gv[O]

—> "l1s

27

execl and exec family

e int execl (char *path, char *arg0, char *arqgl,

., 0)

* Loads and runs executable at path with args arg0, argl, ...)

path is the complete path of an executable object file
By convention, arg0 is the executable object file
“Real” arguments to the program start with argl, etc.
List of args is terminated by a (char*)0 argument

Environment (implicitly) taken from char **environ (an automatically
defined global variable), which points to an array of “name=value”
strings

28

execl and exec family (continued)

» Family of functions includes execv, execve, execvp, execl,
execle, execlp

+ These functions only differ in terms of interface; their purpose
is the same (loading and running a new process, in the context
of the current process)

» Usually, execve is the only system call

— The other functions are implemented as library wrappers

+ Semantics of the suffixes

- v (vector): pass arguments as (NULL-terminated) array of pointers

— 1 (list): pass arguments as (NULL-terminated) list of pointers (i.e., the
function has a variable number of arguments)

- p (path): search executable file name in the PATH (otherwise, full path
must be provided)

- e (environment): explicitly provide new environment (otherwise, use the
current environment pointed by environ)

29

execl: example

int main() {

int res;
if (fork() == 0) {
res = execl ("/usr/bin/cp", "cp", "foo", "bar",

if (res < 0) {
printf ("error: execl failed\n");
exit(-1);
}
}

wait (&res) ;

if (WIFEXITED (res) && (WEXITSTATUS (res) == 0)) {
printf ("copy completed successfully\n");
} else {

printf ("copy failed\n");
}
exit (0) ;

0);

30

Agenda

Inputs/Outputs

40

Note

From this point on, most of the slides are taken from " Lecture 0:
Unix |/O" of the OS course.

® Full set of slides available on the web site:
https://ml-mosig-os.gitlab.io/

41

https://m1-mosig-os.gitlab.io/

Unix files

* A Unix file is a sequence of m bytes:
- By By, Byy ey B

» All I/O devices are represented as files:
- /dev/sda2 (/usr disk partition)
- /dev/tty2 (terminal)

» Even the kernel sometimes represented as a file:
- /dev/kmem (kernel memory image)
- /proc (kernel data structures)

Unix file types

* Regular file
— File containing user/app data (binary, text, whatever)
— OS does not know anything about the format
» Other than “sequence of bytes”, akin to main memory

» Directory file
— A file that contains the names and locations of other files

» Character special and block special files
— Terminals (character special) and disks (block special)

* FIFO (named pipe)
— Afile type used for inter-process communication (details later)

» Socket
— Afile type used for network communication between processes

Unix 1/0

» Key Features
— Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O
— Important idea: All input and output is handled in a consistent
and uniform way
» Basic Unix I/O operations (system calls):
— Opening and closing files
« open()and close()
— Reading and writing a file
« read() and write ()
— Changing the current file position (seek)
+ indicates next offset into file to read or write
* lseek()

|Bo|31|°°’ |Bk—1| By |Bk+1|'°'

Current file position = k

Opening files

Opening a file informs the kernel that you are getting ready to access
that file

int £d4; /* file descriptor */

if ((£fd = open("/etc/hosts", O _RDONLY)) < 0) {
perror ("open") ;
exit(1l);

}

Returns a small identifying integer file descriptor

- f£d == -1 indicates that an error occurred
Each process created by a Unix shell begins life with three open files
associated with a terminal:

— 0: standard input

— 1: standard output

— 2: standard error

Closing files

* Closing a file informs the kernel that you are finished
accessing that file

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror ("close") ;
exit(l);

}

» Closing an already closed file is a recipe for disaster in
threaded programs (more details on this later)

» Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading files

+ Reading a file copies bytes from the current file position
to memory, and then updates file position

char buf[512];

int £d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror ("read") ;
exit(1);

* Returns number of bytes read from file £d into buf
— Return type ssize_t is signed integer (unlike size_t)
- nbytes < 0 indicates that an error occurred

— Short counts (nbytes < sizeof (buf)) are possible and are

not errors! .

Writing files

« Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];

int f£d; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror ("write") ;
exit(l);

Returns number of bytes written from buf to file £4
- nbytes < 0 indicates that an error occurred
— As with reads, short counts are possible and are not errors!

Simple Unix I/O example

» Copying standard input to standard output, one byte at a

time

int main(void)
{
char c;
int len;

while ((len = read(0 /*stdin*/, &c, 1))

if (write(l /*stdout*/, &c, 1) !'= 1)
exit(20);

}

}

if (len < 0) {
printf (“read from stdin failed”);
exit (10);

}

exit (0);

== 1)
{

{

How a Unix kernel represents open files

» Two descriptors referencing two distinct open disk files.
» Descriptor 1 (stdout) points to terminal, and descriptor 4 points to
open disk file

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] shared by all processes]
File A (terminal)
stdin fdo0 = File access
stdout fd1] 7 1o i
File size
stderr fd2 EilelRos - }
fd3 refent=1 File type
fda [~] : i
File B (disk)
] File access
File pos File size
refcent=1 File I.:ype

Info in
stat
struct

File sharing

» Two distinct descriptors sharing the same disk file through two
distinct open file table entries

— E.g., Calling open twice with the same £ilename argument

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

File A (terminal)

stdin fdO = File access
stdout fd1] 7 1o i
File size
stderr fd2 EilelRos "
fd3 refent=1 File type
fda [~ : :
File B (disk)
File pos
refcnt=1

How processes share files
What happens upon fork

» Achild process inherits its parent’s open files
— Note: situation unchanged by exec functions

» Before fork call:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdo = File access
stdout fd1] o i
i File size
stderr fd2 EilElpos "
fd3 refcnt=1 File type
fda ~ <]
File B (disk)
1 File access
File pos File size
refent=1 File Type

How processes share files
What happens upon fork

* Achild process inherits its parent’s open files

« After fork:
= Child’s table same as parents, and +1 to each refent (reference
counter)
Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
Parent File A (terminal)
fdo = File access
fd1] 7 1o i
File size
fd2 File pos -
fd3 refcnt=2 File type
fda ~| 3 3
child File B (disk)
] File access
fdo ———
fd1 File pos File size
fd2 _ File type
d3 refc.nt—Z T
fda

I/O redirection

* Question: How does a shell implement 1/O redirection?

1ls > foo.txt

* Answer: By calling the dup2 (o1dfd, newfd) function
— Copies (per-process) descriptor table entry o1dfd to entry newfd

Descriptor table
before dup2 (4,1)

fdo
fdija
fd 2
fd3
fd4|b

Descriptor table
after dup2 (4,1)

fdo
fdl|b
fd 2
fd3
fd4|b

I/O redirection example

¢ Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before calling exec

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A
stdin fdo0 = File access
stdout fd1] 7 1o i
File size
stderr fd2 kilSlpos "
fd3 refent=1 File type
fda [~] : i
File B
] File access
File pos File size
refcent=1 File fype

20

I/O redirection example (continued)

* Step #2: call dup2(4,1)
= causes fd=1 (stdout) to refer to disk file pointed at by fd=4
= (then fd=4 can be closed)

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A
stdin fdo0 = File access
stdout fd1 " 1o i
File size
stderr fd2 File pos "
fd3 refcnt=0 File type
fda ~| : :
File B
] File access
File pos File size
refcnt=2 File l.’.ype

21

Standard I/O functions

* The C standard library (1ibc) contains a
collection of higher-level standard I/O functions

» Examples:
— Opening and closing files (fopen and fclose)
— Reading and writing bytes (fread and fwrite)
— Reading and writing text lines (fgets and fputs)

— Formatted reading and writing (Escanf and
fprintf)

23

Standard I/O streams

» Standard I/0 models open files as streams
— Abstraction for a file descriptor and a buffer in user memory.
» C programs begin life with three open streams
(defined in stdio.h)
- stdin (standard input)
- stdout (standard output)
- stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, "Hello, world\n");
}

Unix pipes
» Pipes are a mechanism for inter-process communication (IPC)

* A pipe is essentially a (unidirectional) buffer that can be used for
data exchange between a producer process and a consumer
process

* Auvailable at two levels: command line interface and programmatic
interface

+ Command line interface (shell)
— Example:cat *.c | grep var
» Creates two processes: P1 running cat *.c and P2 running grep var

» Connects (redirects) P1’s standard output to the pipe’s input and the pipe’s
output to P2’s standard input

29

Unix pipes
Programmatic interface

» User programs (not just shells) can create and interact
with pipes through system calls

» A pipe is seen as a special kind of file

» The only way to share a pipe between processes is
through inheritance of open files

« Typical usages:
— Parent creates pipe then creates child then communicates with
child through pipe (see following example)
— Parent creates pipe, then create child1 and child2, then child1
and child2 communicate through pipe

30

Unix pipes
Programmatic interface (continued)

Pipe creation: int pipe (int filedes[2])
int f£d[2]; pipe (£d) ;

If the call succeeds, a pipe is created and the £d array is updated with the file
descriptors of the pipe’s output (in £4[0]) and the pipe’ s input (in £d[1])
If the call fails, -1 is returned.

The pipe can then be transmitted through inheritance and used for

communication. Each process will typically use only one side of the pipe and

should close the other side. .
parent child parent child

fd[1]
fd[0]

fd[1]
fd[0]

fd[1]
d[0]

fd[1] fd[1]
fd[0] fd[0]

after pipe (£d) after fork () after closing unused
(copied descriptors) descriptors 31

Unix pipe example

#include ...
#define BUFSIZE 10
int main(void) {

char bufin[BUFSIZE] = "empty";

char bufout[BUFSIZE] = "hello";

int bytesin, bytesout; pid_t childpid;
int £d[2];

pipe (£d) ;

bytesin = strlen(bufin);

childpid = Fork();

if (childpid != 0) { /* parent */

close (£d[0]) ;

bytesout = write(fd[1l], bufout, strlen(bufout)+l);

printf ("[%d]: wrote %d bytes\n", getpid(), bytesout);

else { /* child */

close(£fd[1]) ;

bytesin = read(£fd[0], bufin, BUFSIZE);

printf("[%d]: read %d bytes, my bufin is {%s} \n »,
getpid() , bytesin, bufin);

}
exit(0);

<unix>./parentwritepipe

[29196] :wrote 6 bytes

[29197]: read 6 bytes, my bufin is {hello}
<unix>

32

Unix pipes
Additional details

» Pipes are unidirectional (i.e., one-way communication), with first-in-
first-out semantics

If two-way communication is needed, use a pair of pipes

» Pipes are not persistent

» Automatic producer-consumer synchronization

A reader will block if the pipe is empty but has at least one writer (i.e.,
the pipe input is still open)
If the pipe is empty and has no remaining writer, read will return 0

A writer will block if pipe is full but has at least one reader (i.e., the pipe
output is still open)

A write to a pipe with a closed output will trigger an error

So, for correct operation, it is important for each process to close the
unused side(s) of a given pipe

33

Unix pipes
Additional details (continued)

* A call to write on a pipe with less than PIPE_BUF bytes
(4096 bytes on Linux) is an atomic operation

* A call to write on a pipe with more than PIPE_BUF bytes
is not necessarily atomic (i.e., the written data may get
interleaved with the data of other writes)

» lseek does not work on pipes
+ Seeman 7 pipe for details

34

	
	What is an operating system?
	Unix File System
	The Shell
	Processes
	Inputs/Outputs

